Prof. Mieczysław Kuczma (PUT, 13.05.2019)

Problem (principal stresses and principal directions of a stress tensor - an eigenvalue problem) For given components of the stress tensor $\boldsymbol{\sigma}$ in the coordinate system $\left\{\boldsymbol{e}_{i}\right\}$ at a point P :

$$
[\boldsymbol{\sigma}]=\frac{1}{5}\left[\begin{array}{ccc}
284 & 0 & 288 \tag{1}\\
0 & 10 & 0 \\
288 & 0 & 116
\end{array}\right]_{e_{i}} \mathrm{MPa}
$$

(a) determine principal stresses $\sigma_{i}(i=1,2,3)$, and order them as $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$
(b) determine principal directions \boldsymbol{n}_{i} corresponding to stresses σ_{i}
(c) calculate the stress vector $\boldsymbol{f}^{(\boldsymbol{n})}$ at the point P on the plane π of normal vector \boldsymbol{n},

$$
\boldsymbol{n}=\frac{1}{\sqrt{61}}\left(3 \boldsymbol{e}_{1}+4 \boldsymbol{e}_{2}+6 \boldsymbol{e}_{3}\right)
$$

the length of normal $\boldsymbol{f}_{N}^{(\boldsymbol{n})}$ and tangential $\boldsymbol{f}_{S}^{(\boldsymbol{n})}$ components of $\boldsymbol{f}^{(\boldsymbol{n})}$, and $\alpha=\measuredangle\left(\boldsymbol{n}, \boldsymbol{f}^{(\boldsymbol{n})}\right)$.

Solution

To (a) The eigenvalue problem for the stress tensor $\boldsymbol{\sigma}$ given in (1) is defined by the system

$$
\left[\begin{array}{ccc}
56.80-\sigma & 0 & 57.60 \tag{2a}\\
0 & 2-\sigma & 0 \\
57.60 & 0 & 23.20-\sigma
\end{array}\right]\left[\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

which we supplement with the normalizing condition on the unknown vector $\boldsymbol{n}, \boldsymbol{n} \cdot \boldsymbol{n}=1$,

$$
\begin{equation*}
n_{1}^{2}+n_{2}^{2}+n_{3}^{2}=1 \tag{2b}
\end{equation*}
$$

The characteristic equation for $\boldsymbol{\sigma}$ can be obtained from $\operatorname{det}(\boldsymbol{\sigma}-\sigma \boldsymbol{I}) \equiv|\boldsymbol{\sigma}-\sigma \boldsymbol{I}|=0$,

$$
\left|\begin{array}{ccc}
56.80-\sigma & 0 & 57.60 \tag{3}\\
0 & 2-\sigma & 0 \\
57.60 & 0 & 23.20-\sigma
\end{array}\right|=(2-\sigma)\left[(56.80-\sigma)(23.20-\sigma)-57.60^{2}\right]=0
$$

or, by making use of invariants of $\boldsymbol{\sigma}: I_{1}=82, I_{2}=-1840, I_{3}=-4000$, which leads to

$$
\begin{equation*}
\sigma^{3}-82 \sigma^{2}-1840 \sigma+4000=0 \tag{4}
\end{equation*}
$$

The ordered solutions of (3) and (4) are: $\sigma_{1}=100, \sigma_{2}=2, \sigma_{3}=-20 \mathrm{MPa}$. Thus, we have

$$
[\boldsymbol{\sigma}]=\frac{1}{5}\left[\begin{array}{ccc}
284 & 0 & 288 \tag{5}\\
0 & 10 & 0 \\
288 & 0 & 116
\end{array}\right]_{e_{i}}=\left[\begin{array}{lll}
100 & & \\
& 2 & \\
& & -20
\end{array}\right]_{n_{i}} \mathrm{MPa}
$$

To (b) By substituting $\sigma=\sigma_{i}$ into (2a) and using (2b), we obtain the pairs $\left\{\sigma_{i}, \boldsymbol{n}_{i}\right\}$:

$$
\begin{array}{lll}
\sigma_{1}=100 \mathrm{MPa} & \text { «n } & \boldsymbol{n}_{1}=\frac{4}{5} \boldsymbol{e}_{1}+0 \boldsymbol{e}_{2}+\frac{3}{5} \boldsymbol{e}_{3} \\
\sigma_{2}=2 \mathrm{MPa} & \text { «n } & \boldsymbol{n}_{2}=0 \boldsymbol{e}_{1}+1 \boldsymbol{e}_{2}+0 \boldsymbol{e}_{3} \tag{6}\\
\sigma_{3}=-20 \mathrm{MPa} & \text { «n } \quad \boldsymbol{n}_{3}=-\frac{3}{5} \boldsymbol{e}_{1}+0 \boldsymbol{e}_{2}+\frac{4}{5} \boldsymbol{e}_{3}
\end{array}
$$

To (c) Direct calculation shows that

$$
\begin{aligned}
& \boldsymbol{f}^{(\boldsymbol{n})}=\boldsymbol{\sigma} \boldsymbol{n}=66.067 \boldsymbol{e}_{1}+1.024 \boldsymbol{e}_{2}+39.947 \boldsymbol{e}_{3} \\
& f^{(\boldsymbol{n})}=\left|\boldsymbol{f}^{(\boldsymbol{n})}\right|=77.212 \mathrm{MPa} ; \quad f_{N}^{(\boldsymbol{n})}=\boldsymbol{n} \cdot \boldsymbol{f}^{(\boldsymbol{n})}=56.590 \mathrm{MPa} \\
& f_{S}^{(\boldsymbol{n})}=\sqrt{\left(f^{(\boldsymbol{n})}\right)^{2}-\left(f_{N}^{(\boldsymbol{n})}\right)^{2}}=52.529 \mathrm{MPa} ; \quad \cos \alpha=f_{N}^{(\boldsymbol{n})} / f^{(\boldsymbol{n})}=0.7329 ; \quad \alpha=42.87^{\circ} .
\end{aligned}
$$

