
VFO Control for Mobile Vehicles

in the Presence of Skid Phenomenon

Maciej Micha lek ∗

1 Introduction

Skid is a common phenomenon in real vehicles. Sometimes this effect is negligibly
small and in a consequence can be omitted in a vehicle model preserving practically
acceptable control performance. In a case of nonholonomic mobile robots it is equivalent
to the rolling without slipping assumption. However, in many real-life situations the skid
phenomenon influences vehicle motion in a such degree, that exclusion of it in a system
model leads to significant control performance deterioration. The term skid used in this
paper should be understood as a phenomenon of motion velocity disturbance, which for
nonholonomic vehicles is connected with violating kinematic constraints. Wind blowing
during aircraft flight, currents and waves during ship cruising, loosing adhesion between
road surface and wheels during car ride or moving on sloping areas are examples of
situations, where a skid phenomenon usually appears. To enhance tracking precision
in these cases, control laws dedicated for mobile vehicles should be robust to skid-like
disturbances. It is especially important when skidding is not vanishing and persistently
disturbs vehicle motion.

In the literature the problem of motion-with-skid control has been considered in
some papers. One can recall [1] and [6] for the case of car-like vehicles (the second one
treats about an agricultural tractor), also [8] where the control task was designed for a
skid-steering mobile robot, and [4] dedicated to practical issues of ship steering.

In [2] a new VFO control methodology1 dedicated to tracking and stabilization of
specific subclass of nonholonomic driftless systems has been proposed and verified. The
VFO control strategy can be treated as a generalization of control in polar coordinates
(the need of such a generalization has been already pointed to in [5]). The results have
revealed good performance obtained for 3-dimensional systems with VFO controllers
guaranteeing, among others, good control quality (fast asymptotic error convergence,
natural and non-oscillatory transient behavior), intuitive control input interpretation,
and very simple controller parametric synthesis. The aim of this paper is a description
of the VFO tracking control strategy extension for mobile vehicles in relation to the
original concept presented in [2]. The extension concerns a case of skid phenomenon
influence compensation during vehicle motion. The VFO controller proposed in [2] is
modified to preserve asymptotic convergence of a vehicle position error despite of skid
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1VFO is an abbreviation from words: Vector Field(s) Orientation.
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Figure 1: Three examples of mobile vehicles moving on a
plane: two-wheeled robot (A), aircraft (B), ship (C)

Figure 2: Mobile vehicle
as a rigid body on a plane

effect existence. A similar idea connected with a drift compensation and applied to a
motion planning task can be found in [3].

2 Problem formulation

Let us consider the class of restricted-mobility mobile vehicles moving on a plane, which
in absence of skid can be modeled by the equation





θ̇
ẋ
ẏ



 =





1 0
0 cos θ
0 sin θ





[

u1

u2

]

⇒ q̇ = G(q)u, (1)

where q ∈ R
3 is a vehicle state and u ∈ R

2 is a control vector defined in a space of ve-
locities2. Examples of vehicles from the considered class with geometrical interpretation
of state variables and control inputs are depicted in Fig. 1.

2.1 Skid phenomenon

Since we consider a motion control problem on a kinematic level, we will not be interested
in analyzing reasons of the skid phenomenon. On this level it is rather justified to take
into account only direct results of skidding. Regardless of the reasons of the skid effect,
the results are always the same – an additional velocity vector appears in (1):





θ̇
ẋ
ẏ



 =





1 0
0 cos θ
0 sin θ





[

u1

u2

]

+





0
vsxg

vsyg



 , (2)

where v∗

sg = [vsxg vsyg]T ∈ R
2 is a skid velocity vector described in a global frame

(Fig. 2). Expressing the v∗

sg term in a local frame attached to the vehicle body one can
rewrite (2) as follows3:





θ̇
ẋ
ẏ



 =





1
0
0



u1 +





0
cos θ
sin θ



 (u2 + vsx) +





0
− sin θ
cos θ



 vsy, (3)

2Sometimes in real vehicles one should assume u2 ∈ R+ like in the aircraft case.
3Eq.(3) is equivalent to the rigid body motion q̇ = R(θ)η, where R(θ) ∈ SO(3) and η =

[u1 (u2 + vsx) vsy]T ∈ R
3.
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where [vsx vsy]T = v∗

s ∈ R
2 is the skid velocity vector described in a local frame (one can

treat Eq.(3) as a two-input control system with a drift term g0 = [0 −vsy sin θ vsy cos θ]T ).
From Eq.(3) it follows that the skid effect can be considered as a violation of a non-
holonomic constraint connected with system (1) – due to the nonzero lateral velocity
component vsy – and also as a longitudinal velocity disturbance – due to the nonzero
vsx term. Depending on the reasons causing the skid, terms vsx and vsy can be treated
as constant or varying in time during vehicle movement4. For example, directional wind
or current disturbing a ship cruise (see [4]) or a long-time motion along a slope give
constant skid influence in a global frame, so in a local frame skid velocity coordinates
can be varying. The opposite situation can be seen for instance during mo- ving along a
curve on a slippery ground, where one can notice constant lateral deviation of the vehicle
velocity [6]. It is worth mentioning that partially also dynamic effects not included in
kinematics (1) but appearing in experiments can be treated as a virtual skid included in
the vsx element. Now, let us formulate a control problem, which is intended to be solved
in the sequel.

Problem 1 For a given admissible and persistently exciting reference
trajectory qt(τ) = [θt(τ) xt(τ) yt(τ)]T ∈ R

3 and assuming a nonzero skid velocity
v∗

sg ∈ L∞ with v̇∗

sg ∈ L∞, find a bounded control law u(qt, q, ·) for the kinematics

(2), which guarantees asymptotic convergence of the position error e∗ = [ex ey]T ∈ R
2

to zero and boundedness of the orientation error eθ in the sense that limτ→∞ e∗(τ) = 0,
eθ(τ) ∈ L∞, where:

ex
∆
= xt − x, ey

∆
= yt − y, eθ

∆
= θt − θ. (4)

The admissibility of a reference trajectory means that qt(τ) satisfies Eq.(1) for some
reference inputs u1t(τ), u2t(τ) ∈ L∞. Persistent excitation implies that ∀τ>0 u2t(τ) 6= 0
(see [2]).

3 VFO controller

First of all we recall the basic idea of the VFO control strategy dedicated to kinematics
(1), hence for a case without skid disturbances. After that, by analogy to previous
considerations, an extension regarding a nonzero skid velocity will be presented.

3.1 VFO strategy – brief recall

It has been shown (for example in [2]) that the VFO control strategy
results from simple geometrical interpretations and can be applied to a subclass of non-
holonomic driftless systems with two inputs5. System (1) belongs to this class. One can
decompose (1) into two subsystems: one-dimensional orienting subsystem represented by
the equation θ̇ = u1 and two-dimensional pushing subsystem represented by the equation
q̇∗ = g∗

2u2, where q∗ = [x y]T and g∗

2 = [cos θ sin θ]T . Since the direction (and orienta-
tion) of vector g∗

2(θ) (and in a consequence – of velocity q̇∗(θ)) depends on the θ variable,
it has been proposed to call θ the orienting variable, and the u1 input – the orienting

4In real conditions also random fluctuations of skid components are characteristic.
5The VFO control can be treated as a generalization of control in polar coordinates.
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control. Follo- wing this interpretation the u2 input has been called the pushing control,
since it pushes the sub-state q∗ along the current direction of g∗

2. The proposed control
law for a tracking task has been derived from the desired relation between the g2 vector
field and introduced additional convergence vector field h = [h1 h∗T ]T . This vector field
has been designed so as to indicate in any state q an instantaneous convergence direction
to a reference trajectory qt. In this way the VFO control strategy can be decomposed
into the orienting subprocess, responsible for putting the direction of g∗

2 onto the h∗

vector (with the u1 input), and the pushing subprocess responsible for pushing the state
q∗ (with the u2 input) to the reference trajectory q∗

t . Since the orienting variable θ
plays an auxiliary role during the orienting subprocess, only a proper construction of
the h vector will guarantee asymptotic convergence also of the θ variable to the reference
signal θt near the reference trajectory q∗

t (for details the reader is referred to [2]).

3.2 VFO control with skid compensation

Considering the skid phenomenon, we have to use model (2) or (3) instead of kinematics
(1). By analogy to the comments of Section 3.1 we introduce the convergence vector
field h = [h1 h∗T ]T ∈ R

3, where

h∗(e∗, q̇∗

t ) =
[

h2 h3

]T ∆
= kp e∗ + q̇∗

t , q̇∗

t =
[

ẋt ẏt

]T
, (5)

and kp > 0 is a design parameter (definition of the h1 component will be introduced
later). Since for every error e∗, vector h∗(e∗, q̇∗

t ) defines a desired direction (and ori-
entation) of motion for system (2), the VFO strategy demands meeting the following
convergence relation:

q̇∗(τ)
τ→∞

−→ fk(τ) h∗(e∗(τ), q̇∗

t (τ)), (6)

where fk(τ) is a some scalar and nonzero smooth function. Relation (6) describes the
desirable situation, where the instantaneous directions of vectors q̇∗ and h∗ are matched
(subsystem q̇∗ = g∗

2u2+v∗

sg evolves along the convergence direction defined by h∗). From
now on we take fk(τ) = fk ≡ 1 to stress that not only directions but also orientations
and norms of q̇∗ and h∗ should be matched. Substituting the particular terms from (2)
and (5) into (6) gives

lim
τ→∞

{

u2(τ) cos θ(τ) + vsxg(τ) − h2(τ) = 0
u2(τ) sin θ(τ) + vsyg(τ) − h3(τ) = 0

,

which can be rewritten in a more compact form as

lim
τ→∞

[Atan2 (H3 sgn(u2),H2 sgn(u2)) − θ(τ)] = 0 (7)

with
H2

∆
= h2 − vsxg, H3

∆
= h3 − vsyg. (8)

The limit (7) describes the so-called orienting condition, which gua- rantees matching
of orientations for vectors q̇∗ and h∗. Hereafter the VFO control design follows by
analogy to the original concept mentio- ned in Section 3.1. Recalling (7), we introduce
an auxiliary variable

θa
∆
= Atan2c (H3 sgn(u2t),H2 sgn(u2t)) ∈ R, (9)
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where Atan2c (·, ·) : R × R → R is a continuous version of the function Atan2 (·, ·) :
R × R → (−π, π], and the term sgn(u2) was replaced with sgn(u2t) to guarantee proper
transient behavior of a closed-loop system6. To meet the relation (7) it suffices to make
the auxiliary error ea = θa − θ tend to zero. Hence, let us define the h1 component of
vector h as follows:

h1

∆
= k1ea + θ̇a, (10)

where k1 > 0 is a second design coefficient, θ̇a = (Ḣ3H2 − H3Ḣ2)/ ‖H∗‖2 results from
time-differentiation of (9), and H∗ = [H2 H3]T . According to the VFO strategy one
proposes the following VFO control law:

u1 = h1 ⇒ u1 = k1ea + θ̇a, (11)

u2 = g∗T
2 H∗ ⇒ u2 = H2 cos θ + H3 sin θ. (12)

Equation (12) comes from an idea of careful pushing, which allows for the fastest pushing
only when the orienting condition (7) – and equiva- lently relation (6) – is satisfied.

Proposition 1 Assuming that ∀τ>0 H∗(τ) 6= 0 and the reference trajectory q∗

t is suffi-
ciently smooth: q̇∗

t , q̈
∗

t ∈ L∞, the VFO control law (11,12) applied to system (2) solves
Problem 1.

Proof. Let us first consider behavior of the auxiliary error ea = θa − θ. Substituting
(11) into (2) yields the equation ėa + k1ea = 0, which shows exponential convergence of
the θ variable to the auxiliary one θa. As a second stage we consider evolution of the
e∗ = [ex ey]T error. From (4), (5), and (8) one can write

H∗ = kpe
∗ + q̇∗

t − v∗

sg, ė∗ = −kpe
∗ + r, r = H∗ − g∗

2u2. (13)

It can be shown that the following expressions are true:

‖ r‖ = ‖H∗‖ γ(θ) and lim
θ→θa

γ(θ) = 0, (14)

where γ(θ) =
√

1 − cos2 α(θ) ∈ [0, 1] and α(θ) = ∠(g∗

2(θ),H∗). Introducing a positive
definite function V = 1

2
(e∗T e∗) and using (13,14) one can assess its time derivative as

follows:

V̇ = e∗T ė∗ = e∗T (−kpe
∗ + r) = −kp ‖ e∗‖2 + e∗T r 6

6 −kp ‖ e∗‖2 + ‖ e∗‖ ‖ r‖ = −kp ‖ e∗‖2 + ‖ e∗‖ ‖H∗‖ γ =

= −kp ‖ e∗‖2 + ‖ e∗‖
∥

∥ kpe
∗ + q̇∗

t − v∗

sg

∥

∥ γ 6

6 −kp(1 − γ) ‖ e∗‖2 + γ ‖ e∗‖κ = −W (e∗, q̇∗

t ,v∗

sg, γ),

where κ = ‖ q̇∗

t ‖ +
∥

∥v∗

sg

∥

∥. Function W (τ) is positive definite for

‖ e∗(τ)‖ > Γ(τ), where Γ(τ) =
γ(τ)κ(τ)

kp(1 − γ(τ))
. (15)

6The term sgn(u2t) remains constant during a tracking task for the considered persi- stently exciting
reference trajectories (see the comment after Problem 1).
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Function Γ is finite for γ < 1. The case γ = 1 in (15) is possible, but is temporary and
non-attractive. It can occur only during a transient stage (for some τ = τ < ∞). More-
over, W (τ) = −‖ e∗(τ)‖ κ(τ ) < ∞ ⇒ V̇ (τ ) < ∞ (finite time escape for ‖ e∗‖ when
γ = 1 is not possible). Since γ(τ) can never get stuck in γ = 1 and ∃τγ<∞ : ∀τ>τγ γ(τ) < 1
(as a direct consequence of (14) and exponential convergence of ea) and since κ ∈ L∞

(from assumption), one can conclude that (15) is determined for finite Γ(τ) almost al-
ways and ∀ τ > τγ . As a consequence ‖ e∗(τ)‖ ∈ L∞ and also V,W, ‖H∗‖ , ‖ r‖ ∈ L∞.
Now, from (13) ‖ ė∗‖ ∈ L∞ and hence V̇ ∈ L∞. Since it can be shown that W (τ)
is uniformly continuous and integrible for τ ∈ [0,∞), the Barbalat’s lemma implies
limτ→∞ W (τ) = 0 ⇒ limτ→∞[‖ e∗(τ)‖ − Γ(τ)] = 0. Recalling the limit from (14) and
since limτ→∞ ea(τ) = 0, one concludes: limτ→∞ γ(τ) = 0 ⇒ limτ→∞ Γ(τ) = 0 and fi-
nally limτ→∞ ‖ e∗(τ)‖ = 0. The boundedness of θa and θt together with the exponential
convergence of ea implies θ ∈ L∞, and eθ ∈ L∞. �

Remark 1. Control function (11) has a discontinuous nature. It results from definition
(9), which is not determined for H∗ = 0 (the reason of the assum- ption in Proposition 1).
The equality H∗ = 0 relates to two cases (compare (13) and (5)): A) for e∗ 6= 0 ∧ v∗

sg =
h∗ – only during a transient stage or B) for e∗ = 0 ∧ v∗

sg = q̇∗

t – when a system evolves
exactly along a reference trajectory q∗

t . Since for H∗ = 0 also u2 = 0 (see (12)), the only
term which drives a subsystem q̇∗ = g∗

2u2 + v∗

sg is the skid velocity v∗

sg. Hence, both
cases describe a situation when the skid velocity v∗

sg drives a system toward7 q∗

t (case
A) or along q∗

t (case B). Moreover, for case A it can be seen from (13) that for H ∗ = 0

holds: r = 0 ⇒ ė∗ + kpe
∗ = 0. As a consequence, the boundedness and convergence

of e∗ are still preserved. Both cases are connected with a u1 control discontinuity set,
but they seem to be non-attractive, non-persistent, and unlikely in practice. However,
to obtain a well-defined control u1, one proposes to introduce additional definitions for
θa and θ̇a in assumed sufficiently small ε-vicinity of H∗ = 0. One proposes to take

θa
∆
= θa(τ−) and θ̇a

∆
= 0 for ‖H∗‖ 6 ε, (16)

where 0 < ε < infτ

∥

∥ q̇∗

t (τ) − v∗

sg(τ)
∥

∥ and τ− denotes the time instant of reaching the
ε-vicinity. These additional definitions together with (9) allow the control function (11)
to remain unchanged.
Remark 2. Since the H2,H3 and Ḣ2, Ḣ3 terms are used in the control law (the later
two in the θ̇a term), one has to be able to compute or measure skid components vsxg, vsyg

and their time derivatives. It is a serious practical challenge to obtain these quantities.
Estimating time derivatives of skid components seems rather impractical in a noisy en-
vironment. Hence, assuming relatively slow variation of skid components in comparison
to other derivatives in the θ̇a term, it is justified in practice to take these quantities as
equal to zero. The problem of skid computation will be considered in the next section.

3.3 Skid computation

We assume that the state variables θ, x, y of a vehicle can be measured with a sampling
interval Tp using for example some exteroceptive sensor (e.g. a vision system). With this
assumption the simplest way to obtain skid components vsxg, vsyg is to estimate them

7Note that h∗ defines an instantaneous convergence direction.
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from Eq.(2). In practice, the estimates computed in such a way result from the following
equations:

v̂sxg(n) = ẋ(n) − u2(n − 1) cos [θ(n − 1) + εθ(n − 1)] + εx(n), (17)

v̂syg(n) = ẏ(n) − u2(n − 1) sin [θ(n − 1) + εθ(n − 1)] + εy(n), (18)

where ẋ(n) = [x(n) − x(n − 1)]/Tp, ẏ(n) = [y(n) − y(n − 1)]/Tp, u2(n) is a pushing
input sample from (12) and εθ, εx, εy denote random measurement noise always present
in practical implementations. If noise causes high estimate variances, one can filter
right-hand sides of (17,18) and use filtered components v̂F

sxg, v̂
F
syg (filtered-estimator).

The skid estimates can now be used in definitions (8) instead of true signals (vsxg, vsyg),
which are not known in practice.

4 Simulation results

The verification of the effectiveness of the proposed controller has been carried out for
the kinematics of a differentially driven two-wheeled mobile vehicle. To make simu-
lation results more realistic, two main practical issues have been taken into account:
1) a limitation on the maximum vehicle wheel velocity ωwmax has been imposed8 with
ωwmax = 81[rad/s], 2) the skid filtered-estimator9 (17,18) computed with a sample time
Tp = 0.01[s] has been used with measurement zero-mean Gaussian errors εx, εy , and
εθ with variances σ2 = 0.01 included in Eqs.(17,18). For simulation tests a circle-like
trajectory computed for u1t = 0.5[rad/s], u2t = 1.2[m/s], and qt(0) = [π/4 0 0]T has
been chosen as a reference trajectory. Moreover, the following values have been chosen:
kp = 5, k1 = 10, q(0) = [0 −2 1]T . During simulation the constant skid with components
vsxg = vsyg = 0.5[m/s] has appeared in the time instant t1 = 5[s]. The results obtained10

are illustrated in Fig. 3. It can be seen that position tracking errors tend toward zero
quite fast and remain there also after the skid appearance (starting from t1 = 5[s]). It is
worth to note the compensative action of control signals and bounded but compensative
behavior of the vehicle orientation (crabwise motion). The bottom-left plot shows the
vehicle path on a plane, which can be compared with the bottom-right plot obtained for
a case without skid compensation (vsxg = vsyg ≡ 0 in (8)).

5 Concluding remarks

The VFO position tracking control with skid effect compensation for kinematic mobile
vehicles has been presented. The proposed control strategy results from an extension of
the original concept described in [2]. The extension can be treated as a first attempt
to use the VFO control method for dynamical systems with a drift. The simulation
results included in the paper illustrate the effectiveness of the proposed VFO control
scheme and also reveal its relative robustness to measurement noises and control input
limitations.

8The control vector scaling procedure described in [7] has been used.
9A first order low-pass filter with a time constant T = 0.1 has been applied.

10Simulations have been performed with Matlab/Simulink software.
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Figure 3: Tracking error, skid estimate, and control signal time-plots – top four plots;
vehicle (- -) and reference (-) paths on a plane – bottom two plots (the last one on the
right-hand side for the case without skid compensation)
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[3] I. Harmati, B. Kiss, and E. Szádeczky-Kardoss. On drift neutralization of stratified
systems. In Robot Motion and Control. Recent Developments, volume 335 of LNCIS,
pages 85–96. Springer, 2006.
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