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Abstract

The paper is devoted to the trajectory tracking control task for a differentially-
driven vehicle moving on a plane surface under conditions of the persistent skid-slip
phenomena. The Vector Field(s) Orientation (VFO) control strategy, presented
originally for undisturbed case in [6], has been reformulated here to the new dis-
turbed motion conditions. The extension of the VFO strategy relies on introduction
of the nonlinear skid-slip influence compensator in the feed-forward loop, which in
practical implementation involves the real-time estimation of the skid-slip velocities
and their time-derivatives. The approach considers the skid-slip effects solely on
the kinematic level avoiding the need of modeling a complicated phenomenon of
the wheels-ground interaction. Theoretical analysis shows the asymptotic tracking
ability for the position trajectory with boundedness of the orientation error. Experi-
mental results included in the paper reveal substantial tracking quality improvement
resulting from the utilization of the proposed skid-slip influence compensator.

1 Introduction

Appearance of skid and slip phenomena in practice of vehicle motion control is equivalent
to violation of nonholonomic constraints, which in turn usually determine the nominal
kinematic models used for description of restricted-mobility wheeled robots. If skid-
slip effects are negligibly small, they can be omitted in system modeling. It is justified
when sufficiently slow motion with low acceleration and with good wheel-ground contact
conditions can be assumed. In such circumstances the possible skid-slip effects can be
treated as an occasional, temporal and vanishing system disturbance, which usually can
be effectively attenuated by properly designed motion feedback controller. However in
some particular real-life motion tasks the skid-slip phenomena can persistently influence
the system in such a degree that exclusion of them in a system model leads to signifi-
cant control performance deterioration and the motion safety decreasing. Moreover, in
particular motion tasks it is usually impossible or undesirable to avoid or attenuate the
skid and slip. Hence, the control problem is to preserve the desired motion performance
in spite of the skid-slip presence by attenuation of its negative influence on the overall
control quality. Robustness improvement of automated motion control in the presence
of skid-slip phenomena usually involves inclusion and utilization of some skid-slip model
in a control law design. In the literature of the robotics community there are not many
works explicitly related to the problem of control in skid-slip conditions (one can re-
call [2, 4, 8, 9, 14, 16, 17]). Much less attention has been paid on practical validation of
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the presented solutions – see for example [3, 8, 13, 18].
Skid and slip are the intrinsic phenomena necessary for proper operation (also in a case
of slow motion) of an important class of so-called Skid-Steering Wheeled Mobile Robots
(SSWMRs). For this class of underactuated systems the set of feasible accelerations is re-
stricted and their dynamics are not integrable [11]. Mathematical modeling of SSWMRs
often results from a simplifying assumption where the lateral dynamics of a vehicle is
neglected. The attention is mainly focused on the longitudinal dynamics considering
the slip phenomenon based on its physical or empirical model [12, 21, 22]. It is worth
noting that on a kinematic level the SSWMRs are commonly modeled as a perturbed
unicycle-like system. Thus the control solutions dedicated for the latter can be, at least
in some reasonable conditions, practically applicable also for SSWMRs, [15, 17, 18].

In existing works authors usually use one of the following skid-slip modeling and
control design approaches: dynamic-like one [16], kinematic-like one [2, 4, 13, 14, 17] or
combined approach as in [9]. Dynamic-like modeling of skid-slip effects involves con-
sidering the sophisticated or not fully recognized problems like wheel-ground contact
or tire-ground friction phenomena. These complications usually lead to practical lim-
itations of the approach. Alternative and simpler way of skid/slip-influence modeling
comes from the kinematic approach, where skid and slip influence is represented as ad-
ditional velocity terms in a system model. Such an approach seems to be practically
attractive and justified, since the velocity disturbance is always a direct consequence of
the skid-slip phenomena regardless of their any physical reasons. The latter approach
to skid-slip treatment will be used in the sequel of this paper due to its methodological
simplicity.

Presented work provides an extension and experimental validation of the Vector
Field(s) Orientation (VFO) control strategy adopted to the case of persistently dis-
turbed motion conditions, [5]. The attention will be paid on the position-trajectory
tracking task in the presence of persistent but bounded kinematic disturbances origi-
nated from the skid and slip effects. The control concept utilizes geometrical features of
the disturbed kinematic model of the differentially driven vehicle (DDV). The idea pre-
sented in this paper is an application extension of the nominal VFO controller (described
in [6]) adopted here to the new motion conditions. Proposed modification relies on in-
troduction of the nonlinear skid/slip-influence compensator realized in a feed-forward
loop using a vision feedback and the Kalman filter idea for practical estimation of the
skid-slip components and their time-derivatives. Experimental results obtained in the
laboratory conditions reveal the possibility of effective robot motion control in spite of
the partial lost of the wheels-ground adhesion.

2 System model and problem statement

2.1 Nominal and disturbed vehicle model

Let us consider the nominal (non-disturbed) kinematic model of a differentially driven
mobile vehicle:





θ̇
ẋ
ẏ



 =





1 0
0 cos θ
0 sin θ





[

u1

u2

]

⇒ q̇ = G(q)u, (1)

where q = [θ x y]T ∈ R
3 is a state vector describing the orientation angle and the

position coordinates of the vehicle in a global frame, respectively (see Fig. 1). Nominal
control inputs [u1 u2]T = u ∈ R

2 have the physical interpretation of angular and driving
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Figure 1: Differentially driven vehicle in a global frame (left) and in the presence of skid-slip
phenomena (right)

velocity, respectively which in the case of a DDV can be realized according to the well
known relation

[

u1

u2

]

=

[

r/b −r/b
r/2 r/2

] [

ωR

ωL

]

⇒ u = Jω (2)

with a Jacobian matrix J (as a function of a wheel radius r and a wheel base b denoted
in Fig. 1) and angular velocities of the right ωR and left ωL vehicle wheels, respectively.
The nominal model (1)-(2) assumes that the overall resultant angular and longitudinal
vehicle body velocities (denoted here as u1 and u2) result directly and only from the ac-
tion of wheels driven by motors. It is so called rolling-without-skidding/slipping motion
condition. The non-skidding motion means the absence of a lateral velocity compo-
nent (as expressed in a local body frame) and is defined by the following nonholonomic
constraint:

AT (q)q̇ = 0, where AT (q) =
[

0 − sin θ cos θ
]

. (3)

The non-slipping assumption means in turn that the overall longitudinal velocity of the
unicycle results directly and only from the angular velocity of the wheel. Let us now in-
troduce a skid-slip model, which implies violation of the rolling-without-skidding/slipping
assumption. According to the postulated strict kinematic approach, the skid-slip phe-
nomena can be taken into account in the model (1) with an additional resultant skid-slip
velocity vsg:





θ̇
ẋ
ẏ



 =





1 0
0 cos θ
0 sin θ





[

u1

u2

]

+





ωs

vsxg

vsyg



 (4)

where [ωs v∗T
sg ]T

∆
= vsg ∈ R

3 and v∗
sg

∆
= [vsxg vsyg]T ∈ R

2 are expressed in a global frame
(see fig. 1). Mapping the disturbance vsg into a local frame attached to the vehicle body
one can equivalently write:





θ̇
ẋ
ẏ



 =





1
0
0



 (u1 + ωs) +





0
cos θ
sin θ



 (u2 + vsx) +





0
− sin θ
cos θ



 vsy, (5)

where the terms ωs, vsx and vsy are the skid-slip velocity components defined in a local

frame: [ωs vsx vsy]T
∆
= vs ∈ R

3. Following the recent work [20] and analyzing the
perturbed model (5) one can distinguish two kinds of disturbances: 1) input-additive
ones like ωs and vsx related to the slip effect and 2) unmatched one equal to A(q)vsy,
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which is a direct consequence of the skid phenomenon. Now, the signals u1 and u2 can
be treated only as control inputs, which reflect physical impact of motor drives. It is
worth to note, that additional velocity components ωs, vsx and vsy included in (5) can
represent all possible kinematic disturbances resulting either from skid-slip phenomena
or from other effects not taken into account in the simplistic model like dynamics of
vehicle body and motor drives. These additional contributions can be treated here as
the virtual skid-slip elements. Hereafter we will understand the overall influence of the
skid-slip in such a manner.

Since both types of disturbances (skid and slip) can be included in model (5) and
since (2) is an invertible linear algebraic map, our further considerations will be related
to the simpler unicycle model represented by (1) with control inputs u1 and u2.

2.2 Control problem formulation

The motion task for a vehicle is given by the admissible and persistently exciting ref-
erence trajectory qt(τ) = [θt(τ) xt(τ) yt(τ)]T ∈ R

3 defined as a time-integral of the
nominal model (1) for some bounded reference inputs u1t(τ), u2t(τ) ∈ R and for a given
initial condition qt(0). As a persistent excitation condition we understand the following
relation:

∀τ>0 u2t(τ) 6= 0, (6)

which means that the reference vehicle is always in the translational motion. From now
on we also assume that the skid-slip components in the disturbed model (4) or (5) are
measurable (or can be practically estimated) and they together with the so-called slip
angle δs (see Fig. 1) are bounded:

ωs(τ), vsxg(τ), vsyg(τ) ∈ L∞, |δs| < π/2. (7)

The above assumption allows preserving the vehicle point-controllability (controllability
of the vehicle position) as has been stated in [20]. We additionally assume that the
lateral and longitudinal skid-slip components are continuous functions of time:

v̇sxg(τ), v̇syg(τ) ∈ L∞. (8)

Keeping up the above one can formulate the following control problem.

Problem 1 (Control problem) For a given admissible reference trajectory qt(τ) ∈ R
3

which meets the persistent excitation condition (6) find a bounded feedback control law
u(qt, q, ·) for the disturbed model (4), which in the presence of bounded and continuous
skid-slip phenomena guarantees boundedness of the orientation error eθ and asymptotic
convergence of the position error e∗ = [ex ey]T ∈ R

2 to zero: limτ→∞ e∗(τ) = 0, where:

eθ(τ)
∆
= θt(τ) − θ(τ) ∈ R, (9)

e∗(τ) =

[

ex(τ)
ey(τ)

]

∆
=

[

xt(τ) − x(τ)
yt(τ) − y(τ)

]

∈ R
2. (10)

Remark 1 Boundedness of the orientation error eθ prevents the situation where the
vehicle persistently turns around the vertical axis and simultaneously tracks the position
trajectory q∗

t = [xt yt]
T . Such a solution seems to be undesirable in practice. It is worth

to stress, that asymptotic convergence of the whole tracking error e = [eθ ex ey]T to zero
in the presence of persistent skid influence is not possible as has been stated in [20] (in
this case the vehicle loses its posture controllability) what is intuitively understood.
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3 VFO control strategy

VFO controller with skid-slip compensation1, which will be proposed in the sequel,
originates from the nominal VFO concept designed for the case of rolling-without-
skidding/slipping assumption. Therefore, it seems desirable to recall basic ideas of the
VFO methodology to make our further considerations more clear. Due to practical rea-
sons the following description will be shortened only to principles. More details can be
found in [6].

3.1 Principles of the VFO control

The VFO control design methodology and control strategy result from simple geometrical
interpretations of a system model structure and has been applied so far to several exam-
ples of nonholonomic driftless systems with two inputs2. System (1) is an archetypical
example of the VFO concept utilization. Principles of the method result from possible
decomposition of the model (1) into two subsystems:

Σθ : θ̇ = u1, Σ∗ : q̇∗ = g∗
2(θ)u2,

where q∗ = [x y]T and g∗
2(θ) = [cos θ sin θ]T . Using simple geometrical interpretation

explained in the sequel Σθ is called the orienting subsystem and Σ∗ – the pushing sub-
system. Since the direction (and orientation) of vector g∗

2(θ) in R
2 (and consequently

of velocity q̇∗ in R
2) depends on θ variable, it has been proposed to call θ the orient-

ing variable, and the u1 input – the orienting control. Following this interpretation u2

is the pushing control, since it pushes the sub-state q∗ along the current direction of
g∗

2(θ) (compare structure of Σ∗). The original VFO control law for a tracking task can
be derived according to the demand of perfect matching between the velocity vector q̇

of the model (1) and the introduced and particularly designed convergence vector field
h = [h1 h∗T ]T ∈ R

3. The vector3 h(q, qt, ·) defines at every point q in the vehicle state
space an instantaneous convergence direction to a reference trajectory qt(τ). Its defi-
nition stays a degree of freedom for the designer, since it can be determined in several
ways. In the VFO strategy the way in which h(q, qt, ·) defines the convergence direction
is especially important and crucial for the motion quality obtained in the resultant VFO
closed-loop system. Namely, using the nonholonomic nature of the system (1) the simul-
taneous attenuation of both the position and the orientation errors during a transient
stage implies highly oscillatory vehicle movement, which usually cannot be accepted in
practical implementations. To avoid the transient oscillations the first component of
h can be designed with relation to introduced the so called auxiliary orienting variable
θa(τ) = arg(h∗(τ))4 rather than to the reference angle θt(τ). The auxiliary variable θa(τ)
allows the vehicle smoothly approach a position trajectory q∗

t (τ) = [xt(τ) yt(τ)]T ∈ R
2

making only subsequently the vehicle orientation converge to the reference signal θt(τ)
(when the vehicle approaches a neighborhood of q∗

t ). Believing that there exist many
possible constructions of the convergence vector field which fulfill mentioned conditions,

1For the sake of simplicity we will use the expression skid-slip compensation instead of skid-slip

influence compensation which is in fact more strict in the sense of presented solution.
2Authors believe that the VFO method can be treated as a generalization of the polar-coordinates-like

control concept.
3We will use hereafter the general notion, consistent with notion in [6], where (·) denotes all the so

far undetermined arguments of a function.
4For the forward motion θa(τ ) := arg(h∗(τ )); for the backward motion θa(τ ) := arg(h∗(τ )) ± π,

see [6].
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we have originally proposed the simple one coming from weighted linear combinations
of particular errors and feed-forward velocity terms:

h1 = k1(θa − θ) + θ̇a, h∗ = kp(q∗
t − q∗) + q̇∗

t ,

where k1, kp > 0 are the only two VFO controller parameters (they are very easily
tunable). Combining mentioned geometrical interpretations related to the model (1)
together with the concept of the convergence vector field the VFO control strategy can
be described as follows. Let us partition the tracking control problem into two subtasks:
1) the orienting subprocess, where the orienting input u1 is responsible for putting the
direction of g∗

2(θ) (and in a consequence direction of q̇∗) onto the direction defined by
h∗(q, qt, ·), and 2) the pushing subprocess where the pushing input u2 is responsible for
pushing the state q∗ along g∗

2(θ) toward the reference position trajectory q∗
t (τ). De-

signing u1 and u2 in a way which allows accomplishing the above subtasks leads to the
VFO control law. It will guarantee that the vehicle position q∗(τ) will be converging
toward q∗

t (τ). However, since the orienting variable θ plays an auxiliary role during the
orienting subprocess, only a proper construction of the h vector field will guarantee the
terminal convergence of θ(τ) to its reference θt(τ) (the proposition for h vector field
given above satisfies this condition). It is worth to note that the partition of the con-
trol process proposed above is especially natural for kinematics (1) and resembles the
polar-coordinates-like control. It surprisingly (due to the more general treatment) can
be successfully applied also to other kinematics like the nonholonomic manipulator or
the chained system.
Additional heuristic concept used in the VFO control methodology is an idea of the
careful pushing, which relies on making the pushing intensity (understood as |u2|) pro-
portional to the instantaneous orthogonal projection of h∗ onto the current direction of
the vehicle motion (determined by g∗

2(θ)). As a consequence, the careful pushing strat-
egy admits the maximal pushing only for perfect direction matching between g∗

2(θ) and
convergence vector h∗(q, qt, ·).
Utilization of the above principles will be clearly exemplified in the next subsection
during presentation of our main result of this paper. The original (nominal) VFO
control proposed in [6] assumed the following control input definitions: u1 = h1 and
u2 = ‖h∗‖ cos α ≡ g∗T

2 (θ)h∗, where α = ∠(g∗
2(θ),h∗). It will be shown that after nec-

essary modifications related to the skid-slip phenomena, the VFO control law can be
designed for the considered disturbed case in a similar way as for the nominal one. The
nominal VFO control approach for the trajectory tracking task can be retrieved from
Fig. 2 taking v∗

sg = 0 and consequently: H∗ = h∗ and q̇∗ = g∗
2u2.

The above recall will clarify and justify particular selections made in the sequel.

3.2 VFO tracking control with skid-slip compensation

Let us define, according to considerations from Subsection 3.1, the positional component
of the convergence vector field as follows:

h∗ =

[

h2

h3

]

∆
= kp e∗ + q̇∗

t , kp > 0, q̇∗
t =

[

ẋt

ẏt

]

, (11)

where kp is a design parameter. Definition (11) ensures that h∗ for e∗ 6= 0 always points
toward the positional reference trajectory q∗

t using simultaneously some kind of motion
prediction along q∗

t by utilizing the feed-forward velocity term q̇∗
t . Since for the current

tracking error e∗ = q∗
t − q∗ the vector h∗(e∗, q̇∗

t ) defines a desired direction for the
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Figure 2: VFO control strategy with the skid-slip influence compensation in two cases: when
q̇∗ 6= h∗ (A-left) and for q̇∗ = h∗ (B-right)

resultant vehicle motion, it is desirable to make the generalized velocity q̇∗ converge to
h∗, at least at the limit, as follows:

lim
τ→∞

[q̇∗(τ) − h∗(e∗(τ), q̇∗
t (τ))] = 0. (12)

The above relation means that one expects matching of the orientations (directions) as
well as of the norms for both vectors5 q̇∗ and h∗. Substituting particular terms from (4)
and (11) into (12) gives the following condition

lim
τ→∞

{

u2(τ) cos θ(τ) + vsxg(τ) − h2(τ) = 0
u2(τ) sin θ(τ) + vsyg(τ) − h3(τ) = 0

,

which can be rewritten in a more compact form as

lim
τ→∞

[Atan2 (H3 sgn(u2),H2 sgn(u2)) − θ(τ)] = 0 (13)

with

H∗ =

[

H2

H3

]

∆
= h∗ − v∗

sg =

[

h2 − vsxg

h3 − vsyg

]

. (14)

The limit (13) describes the so-called orienting condition (according to terminology
introduced in [6]). Meeting (13) guarantees matching for orientations of vectors q̇∗ and
h∗ – matching for their norms will be considered in the sequel. To meet (13) let us
introduce the auxiliary variable

θa
∆
= Atan2c (H3 sgn(u2t),H2 sgn(u2t)) ∈ R, (15)

where Atan2c (·, ·) : R×R 7→ R is a continuous version6 of Atan2 (·, ·) : R×R 7→ (−π, π].
Note that in (15) we replaced u2 term with the reference one u2t due to the two reasons:
to avoid possible chattering effect in control (note that according to assumption (6) the

5Note, that for e∗ = 0 the relation (12) implies: q̇∗(τ ) − q̇∗

t (τ ) = 0.
6Continuous-time computations of (13) is equivalent to time-integration of the velocity signal θ̇a(τ )

given by (18).
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sign of u2t(τ) is constant for all τ > 0) and to guarantee proper transient behavior of a
closed-loop system. If we now introduce the auxiliary error

ea
∆
= θa − θ, ea ∈ R (16)

fulfillment of the orienting condition (13) involves simply making (16) converge to zero.
Since the first component of h should define the convergence direction for the first state
variable we propose to define it as follows:

h1
∆
= k1ea + θ̇a, k1 > 0, (17)

where k1 is a second design parameter, and

θ̇a =
Ḣ3H2 − H3Ḣ2

‖H∗‖2 , ‖H∗‖ 6= 0 (18)

is a feed-forward velocity term (coming from the time-differentiation of (15)), where

Ḣ2 = kp(ẋt − ẋ) + ẍt − v̇sxg, (19)

Ḣ3 = kp(ẏt − ẏ) + ÿt − v̇syg. (20)

Using principles of the VFO method described in Subsection 3.1 we are ready to propose
the VFO feedback control law considering the skid-slip disturbances as follows:

u1
∆
= h1 − ωs ⇒ u1 = k1ea + θ̇a − ωs, (21)

u2
∆
= g∗T

2 H∗ ⇒ u2 = H2 cos θ + H3 sin θ, (22)

where (21) takes into account the input-additive disturbing component ωs, and (22)
includes the longitudinal and lateral skid-slip components vsxg and vsyg. Since (21)
depends on h1 defined in (17), the orienting role played by the input u1 in the overall
control process becomes evident. On the other hand, definition (22) satisfies the heuristic
concept of careful pushing mentioned in Subsection 3.1. Moreover, it can be shown that
(22) guarantees convergence given by (12) also in the sense of the norms of vectors q̇∗

and h∗.
The VFO control strategy with the skid-slip influence compensation has been graphically
illustrated in Fig. 2 for two cases: where the relation (12) is perfectly satisfied: q̇∗−h∗ =
0 (case B), and where the relation (12) is under realization (case A).
We can now formulate the following proposition.

Proposition 1 Assuming that:

A1. the admissible reference trajectory qt(τ) satisfies (6) and is sufficiently smooth so
that: θ̇t(τ), q̇∗

t (τ), q̈∗
t (τ) ∈ L∞,

A2. skid-slip components satisfy (7) and (8),

A3. ∀τ>0 H∗(τ) 6= 0

the VFO control law with skid-slip influence compensation proposed in (21)-(22) applied
to system (4) solves Problem 1.
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Proof. Let us first consider behavior of the auxiliary error (16). Substituting (21)
into (4) yields the equation ėa + k1ea = 0, which clearly implies boundedness and expo-
nential convergence of ea to zero:

ea(τ) ∈ L∞, lim
τ→∞

ea(τ) = 0. (23)

In a second stage we consider the time-evolution of the position error e∗ = [ex ey]T .
From (10), (11), and (14) one can write

ė∗ = −kpe
∗ + r, r

∆
= H∗ − g∗

2u2, (24)

where H∗ = kpe
∗+q̇∗

t −v∗
sg. Moreover, it can be shown (see Appendix) that the following

expressions are true:

‖ r‖ = ‖H∗‖ γ(θ) and lim
θ→θa

γ(θ) = 0, (25)

where γ(θ) =
√

1 − cos2 α(θ) ∈ [0, 1] and α(θ) = ∠(g∗
2(θ),H∗). The subsequent analysis

will utilize considerations and lemmas included in [7] related to stability of perturbed
systems (pages 350–355). Following the mentioned reference, let us treat (24) as a
nominal system

ė∗ = f(e∗), f(e∗) = −kpe
∗ (26)

with the perturbation r = r(e∗) = H∗(e∗, q̇∗
t ,v

∗
sg) − g∗

2u2. Recalling that H∗ = kpe
∗ +

q̇∗
t − v∗

sg the upper bound of the perturbation can be assessed as follows:

∀τ>0,e∗∈R2 ‖ r(e∗)‖ 6 γ′(τ) ‖ e∗‖ + ∆(τ),

where γ′(τ) = kpγ(τ) and ∆(τ) = γ(τ)
∥

∥ q̇∗
t (τ) + v∗

sg(τ)
∥

∥. Note, that γ ′(τ) and ∆(τ)
are nonnegative, bounded and continuous (assumptions A1 and A2). Moreover, since

limτ→∞ γ(τ) = 0 also γ ′(τ) → 0 and ∆(τ) → 0 for τ → ∞. It is evident that V
∆
= 1

2e∗T e∗

is a Lyapunov function for the nominal system (26), since for all τ > 0 and for all e∗ ∈ R
2

the following inequalities hold: c1 ‖ e∗‖2
6 V (e∗) 6 c2 ‖ e∗‖2, ∂V

∂e∗
f(e∗) 6 −c3 ‖ e∗‖2 and

∥

∥

∂V
∂e∗

∥

∥ 6 c4 ‖ e∗‖ with c1 = c2 = 0.5, c3 = kp and c4 = 1. As a consequence, e∗ = 0 is
an exponentially stable equilibrium point of the nominal system (26). Additionally, note
that γ′(τ) satisfies the following condition (see [7] – eqs. (9.20,9.21) and Lemma 9.5):
∫ τ

0 γ′(ξ)dξ 6 ετ +η for some nonnegative (and bounded) constants η and ε < c1c3
c2c4

= kp.
Now, recalling Lemma 9.4 from [7] one concludes, that the solution e∗(τ) of the perturbed
system (24) satisfies the following inequality:

‖ e∗(τ)‖ 6 ρ ‖ e∗(0)‖ e−aτ + ρ

∫ τ

0
e−a(τ−ξ)∆(ξ)dξ (27)

for e∗(0) ∈ R
2 and any bounded ∆(τ), with ρ = eη > 1, a = (kp − ε) > 0. Moreover,

according to Lemma 9.6 from [7], since limτ→∞ ∆(τ) = 0, the solution e∗(τ) of (24)
asymptotically converges to zero: limτ→∞ e∗(τ) = 0.

In the last step the boundedness of the orientation error eθ can be concluded using
the following reasoning. Using the model structure (1) and Fig. 1 one can write: θ =
arg(u2g

∗
2) and δs = arg(q̇∗)−θ. Since at the limit for τ → ∞ one has θ = θa and ‖ e∗‖ = 0

one concludes from (11) that for τ → ∞ hold: h∗ = q̇∗
t and q̇∗ = h∗ = q̇∗

t . Following
further this way we obtain for τ → ∞: δs = arg(h∗) − θ = arg(q̇∗

t ) − θ = θt − θ = eθ (at
least in S

1). The latter conclusion stays in agreement with Theorem 4 presented in [20].
Now, using (7) together with the result from (23) one can conclude boundedness of eθ.
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Recalling definitions (21)-(22) one can claim what follows: since e∗ ∈ L∞ (due to
(27)) and q̇∗

t ,v
∗
sg ∈ L∞ (by assumption A1 and condition (7)) also H2,H3 ∈ L∞ and in

a consequence u2 ∈ L∞. From condition (7) and since q̇∗
t , q̈

∗
t , v̇∗

sg ∈ L∞ (by assumption

A1 and condition (8)) we have θ̇a ∈ L∞, what together with boundedness of ea (due
to (23)), boundedness of ωs (from condition (7)) and boundedness of u2 (shown above)
yields u1 ∈ L∞.

�

Remark 2 Relaxing assumption A3 to: H∗ 6= 0 for almost all τ > 0, which means
that H∗ can temporarily degenerate to zero but it does not get stuck there, makes the
control input (21) a discontinuous function. Discontinuity results from definition (15)

and equation (18), which are not determined for H ∗ = 0. Recalling that H∗ ∆
= h∗−v∗

sg =
kpe

∗ + q̇∗
t − v∗

sg, one can find that H∗ = 0 is related to two cases:

C1. e∗ 6= 0 ∧ v∗
sg = h∗ ⇒ it may hold only during a transient stage,

C2. e∗ = 0 ∧ v∗
sg = q̇∗

t ⇒ when a closed-loop system evolves exactly along q∗
t .

Since for H∗ = 0 also u2 = 0 (see (22)), the only term which in both cases drives
a subsystem q̇∗ = g∗

2u2 + v∗
sg is the skid velocity v∗

sg. Hence, C1 describes the situation
when the skid velocity v∗

sg drives the system toward7 q∗
t , and C2 relates to the situation

when v∗
sg drives the system exactly along q∗

t . Moreover, for C1 it can be seen from (25)
that H∗ = 0 implies: r = 0 ⇒ ė∗ + kpe

∗ = 0. As a consequence, the boundedness and
convergence of e∗ are preserved. The two cases determine a discontinuity set of input u1,
but they seem to be non-attractive, non-persistent, and unlikely in practice. However, to
get a well-defined control u1, one can introduce additional definitions for θa and θ̇a in
the assumed sufficiently small ε-vicinity of H∗ = 0. One proposes to take:

θa
∆
= θa(τ−) and θ̇a

∆
= 0 for ‖H∗‖ 6 ε, (28)

where 0 < ε < infτ

∥

∥ q̇∗
t (τ) − v∗

sg(τ)
∥

∥ and τ− denotes the time instant of reaching the
ε-vicinity. Definitions (28) together with (15) allow the control function (21) to remain
unchanged.

Note, that the proposed control law (21)-(22) compensates the skid-slip influence in
a nonlinear feed-forward manner using the skid-slip velocity and acceleration measure-
ments. Hence, in the absence of the skid-slip phenomena the VFO control law (21)-(22)
can be used without changes (using only zero values for the skid-slip velocity components
vsxg, vsyg and ωs) to ensure asymptotic posture tracking for the vehicle (1) in the nomi-
nal case. Definitions (21)-(22) describe in this case the nominal VFO tracking controller
proposed in [6].

Recalling (14), (19), (20) and (21) we can see that the skid-slip velocities as well as
their time derivatives are involved in the proposed VFO control law computations. It
is a serious challenge to obtain sufficiently good estimates of these signals in practical
(field) conditions. Since there are no sensors directly measuring the skid-slip effects, we
have to assess them indirectly from available measurements. Using the model structure
(4) one can compute the skid-slip velocities as follows:

ωs = θ̇ − u1, vsxg = ẋ − u2cθ, vsyg = ẏ − u2sθ, (29)

7Note that h∗ defines an instantaneous convergence direction.
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Figure 3: Block scheme of the VFO control system with skid-slip compensation

where cθ ≡ cos θ, sθ ≡ sin θ, and u1, u2 result from the proposed VFO control action.
Differentiating vsxg and vsyg with respect to time gives the following theoretical formulas
for time-derivatives of skid-slip velocities:

v̇sxg = ẍ + u2θ̇sθ − u̇2cθ, v̇syg = ÿ − u2θ̇cθ − u̇2sθ. (30)

Utilization of formulas (29) and (30) in practice involves estimation of the terms ẋ, ẏ, θ̇, ẍ, ÿ
and u̇2. The time-derivatives of state variables have to be measured/estimated using the
skid/slip-insensitive sensory systems like a vision cameras, gyroscopes, accelerometers,
GPS etc. (positive results illustrating practical utilization of the mentioned sensors
for vehicle localization and the state-derivatives and skid-slip estimation can be found
in [8, 13, 19]). The latter term, u̇2, can be computed numerically using either the finite
difference approximation (possibly filtered) or the so called robust exact differentiator
introduced in [10]. Technical details of the skid-slip estimation algorithm used during
conducted experiments are presented in the next section.

4 Experimental verification

4.1 Experimental setup

The experimental testbed consists of the differentially-DC motor-driven wheeled mo-
bile robot MTV3 (presented in Fig. 4) moving on a slippery (teflon-like) surface, the
monochrome digital vision camera SVS084MSCL used as an exteroceptive sensor mea-
suring the vehicle’s posture components (vision feedback), a PC-station realizing all
high-level computations and a radio-transmission module allowing one to send the cur-
rent command signals of the platform wheel velocities to two PI regulation loops im-
plemented on a vehicle board. Selected technical parameters of the MTV3 robot are
as follows: mass m = 0.5kg, wheel-base b = 0.066m, wheel radius r = 0.026m. High-
level control loop with the VFO controller has been implemented with a sampling time
T = 0.022 s. The mobile robot was equipped with three LED markers mounted on the
vehicle top. The vision system estimates the current vehicle posture utilizing LED mark-
ers of the robot. All needed computational blocks along with the skid-slip estimator and
the VFO controller with the skid-slip compensator have been implemented in C/C++
language on a PC computer. Block scheme of the overall high-level control system has
been illustrated in Fig. 3.
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Figure 4: Differentially-driven mobile robot MTV3 (left) and the computation diagram of the
VFO control law with skid-slip compensation (right)

4.2 Practical estimation of skid-slip velocities

Practical implementation of the skid-slip compensator involves efficient estimation of
skid-slip velocities. Since vision feedback signals qvs = [θvs xvs yvs]T are corrupted
by measurement noise, the Kalman filter has been implemented to provide sufficiently
smooth estimates of real velocity and acceleration components of the moving robot plat-
form. For modeling purposes needed in Kalman filtering we defined three independent
third-order discrete-time kinematic models describing the robot platform motion in all
possible three degrees of freedom: one for angular and two for translational motions
(see [1]). All models are represented by the following state and output equations:

zi (n + 1) = Azi (n) + wi(n), (31)

yi (n) = Czi (n) + εi(n) (32)

taking (for a sampling time T )

zi =





ziq

ziv

zia



 , A =





1 T 0
0 1 T
0 0 1



 , C = [1 0 0] (33)

where ziq, ziv , zia denote respectively displacement, velocity and acceleration components
of the ith degree of freedom with z1q := θ, z2q := x, z3q := y. We assumed white and
uncorrelated process and measurement noises wi ∼ N (0,Wi), εi ∼ N (0, σ2

yi), where

Wi = E[wiw
T
i ] = diag{σ2

iq, σ
2
iv, σ

2
ia}, σ2

yi = E[ε2
i ]. Due to classical implementation of

the filter (see [1]) we restrict ourself only to recalling the prediction and correction stage
equations which for the i-th degree of freedom take the form:

zi(n) = Aẑi(n − 1)

ẑi(n) = zi(n) + Ki(n) [yi(n) − Czi(n)] ,

where Ki(n) is a Kalman filter gain, zi denotes the predicted state and ẑi the corrected
state estimate. Appropriate components of the corrected state estimate have been used
in the skid-slip estimation procedure according to the following formulas (compare (29)):
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ω̂s(n) = δω [ẑ1v(n) − u1(n − 1)] , (34)

v̂sxg(n) = δx [ẑ2v(n) − u2(n − 1) cos ẑ1q(n)] , (35)

v̂syg(n) = δy [ẑ3v(n) − u2(n − 1) sin ẑ1q(n)] (36)

and for skid-slip accelerations (compare with (30))

ˆ̇vsxg(n) = δx

[

ẑ2a(n) + u2(n)ẑ1v(n)sẑ1q(n) − u̇F
2 (n)cẑ1q(n)

]

(37)

ˆ̇vsyg(n) = δy

[

ẑ3a(n) − u2(n)ẑ1v(n)cẑ1q(n) − u̇F
2 (n)sẑ1q(n)

]

(38)

where sz ≡ sin z, cz ≡ cos z, and δω, δx, δy ∈ (0, 1] are the scaling factors – design pa-
rameters of the skid-slip estimator. The term u̇F

2 has been implemented as the filtered
finite backward difference of u2 signal samples.
The scaling factors δω, δx and δy used in (34)-(38) play an important role in the effective
and careful skid-slip compensation in practice. One can interpret their introduction as
the proposition how in a simple way take into account the cross-coupling effect between
the kinematic control action and the skid-slip disturbance, which is not modeled by
equation (4). Explanation of the mentioned cross-couplings comes from the fact that
realizing too high wheel velocities of the controlled vehicle can simultaneously deepen
the skid-slip phenomena. Thus, the scaling factors allow realizing the cautious compen-
sation preventing the dangerous effect of the practical skid-slip overestimation leading
in extremal conditions to the loss of control over a vehicle.

The order of computations of the overall proposed VFO control strategy has been
illustrated with a diagram in Fig. 4.

4.3 Experimental results

Three experiments have been conducted for two circular (ExpA and ExpB) and one
elliptical (ExpC) reference trajectories. Circular trajectories were generated according
to the equations: xt(τ) := rt cos ωtτ , yt(τ) := rt sin ωtτ where for ExpA: rt = 0.25m,
ωt = 3.3rad/s (small circle), and for ExpB: rt = 0.32m, ωt = 3rad/s (big circle).
The elliptical trajectory for ExpC was computed according to the formulas: xt(τ) :=
rxt cos ωtτ , yt(τ) := ryt sin ωtτ for rxt = 0.5m, ryt = 0.25m, and ωt = 2rad/s. During
the experiments parameter values have been chosen as follows: k1 = 2, kp = 1 (VFO
controller parameters) and δω = 0.45, δx = δy = 0.4 (cautious-compensation scaling
factors) for both the circular trajectories and δω = 0.35, δx = δy = 0.3 for the elliptical
trajectory, respectively.

Experiments have been conducted according to the scenario in which the robot ini-
tially was controlled by the nominal VFO controller with the skid-slip compensator
turned off. After obtaining the vehicle motion under stable and intensively affecting
skid-slip conditions the automatic sequence of turn-on/turn-off operations was initiated
by the PC computer. The sequence allows revealing the differences in tracking qual-
ity with and without the compensator. Obtained results together with the skid-slip
estimation quality are illustrated in Figs. 5-13.

4.4 Comments to the results

Analyzing the time plots (A) in Figs. 5, 8, and 11 one can see the substantial improve-
ment of position tracking quality (especially for the circular trajectories) within the time
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intervals when the skid-slip influence compensator was activated (time intervals denoted
with ON mark). Obtained non-asymptotic behavior of the tracking error is a conse-
quence of all the practical conditions like the state measurement noises, the skid-slip
estimation errors, unmodeled robot dynamics, limited bandwidth of the control system
and the mentioned cross-coupling effect, which have not been explicitly treated in the
conducted theoretical analysis. Plots (D) present the high-level (robot platform level)
control signals u1, u2. One may find that the main control effort is connected with the
orienting control u1 while the pushing control u2 reveals only small fluctuations near
some average value. The plots of geometrical paths drawn by the vehicle for the two
ON/OFF successive sequences indicate also corrections made by the compensation ac-
tion in the sense of the motion area occupied by the vehicle. It may have an important
practical meaning from motion safety point of view in the cluttered environment. The
results on plots (B) confirm the claimed boundedness of the orientation error eθ and
theoretically predicted convergence of eθ to the skid-slip angle, especially within the
ON-intervals (the skid-slip angle has been computed as δs = arctan (v̂sy/v̂sx), where v̂sx

and v̂sy are the estimates of the skid-slip velocity components expressed in the local
robot frame).

We would like to stress that the proposed VFO control strategy does not prevent
nor attenuate the skid-slip phenomena but it attenuates its negative influence on the
position tracking quality. It is especially visible on plots in Figs. 5(C) and 8(C), where
the lateral skid-slip estimate v̂sy, computed according to (38) and expressed in a local
vehicle body frame, persistently reaches relatively high values during the overall control
time horizon. In the considered cases the lateral skid results mainly from the centrifugal
acceleration, which is persistently present during the vehicle motion (also when the skid-
slip compensator is active). Comparing plots from Figs. 5(C) and 8(C) one can find the
higher skid-slip intensity in the latter case (big circle trajectory).

Motion conditions in the case of elliptical reference trajectory are qualitatively some-
what different. The curvature of the reference trajectory is now time-varying. Thus the
intensity of the lateral skid phenomenon resulting from the centrifugal acceleration is
not uniform along the whole elliptical path. Its maximal intensity falls into the neigh-
borhoods of the ellipse’s foci. Since the vehicle goes through the neighborhoods quite
fast, there is no much time for the control system to substantially compensate the skid
influence before subsequent transition of the vehicle into the region of relatively smaller
skid intensity. As a consequence, obtained efficiency of the skid-slip compensation is
better for the constant-curvature (circular) trajectories than for the elliptical one, which
may result from limited bandwidth of the closed-loop system.

For quantitative comparison of tracking performance obtained for all experiments
within two subsequent ON/OFF compensation sequences, the time plots of the chosen
quality functional are presented in Figs. 6-7, 9-10, and 12-13. The quality functional
represents the average tracking error power (within a selected time interval) and has
been defined as follows:

J(nT )
∆
=

1

(n − ni)T

n
∑

j=ni

‖ e∗(jT )‖2 , (39)

where nT is a discrete time, and niT denotes the initial time instant of the selected time
interval. Values of two functionals JON and JOFF have been computed for particular
time intervals of any one ON/OFF sequence. The tracking quality improvement ratios

Ri
∆
= [1 − JON

i (nT )/JOFF
i (nT )] · 100%, i = 1, 2
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Table 1: Tracking quality improvement ratios obtained during the conducted experiments

Experiment R1 (first ON/OFF) R2 (second ON/OFF)

ExpA 72.5% 76.8%
ExpB 85.2% 72.0%
ExpC 65.6% 46.0%

obtained for the ith ON/OFF sequence (for all three experiments) and computed for nT
taken from the ends of particular ON/OFF time intervals are presented in Tab. 1. For
both cases of circular trajectories the skid-slip compensation has provided the tracking
quality improvement over 70%. For the elliptical trajectory the improvement ratios are
not less than 46%.

5 Conclusions

In the paper the VFO control strategy extended with the skid-slip influence compensa-
tion scheme has been presented and practically tested. The skid and slip phenomena
have been treated solely on the kinematic level in a form of an additional velocity vec-
tor disturbing the nominal nonholonomic vehicle kinematics. The skid-slip influence
compensator has been formulated as a nonlinear feed-forward block, which in the ab-
sence of skid-slip effects can be easily turned off yielding the nominal VFO tracking
controller originally proposed in [6]. Convergence properties of a closed-loop system
formally analyzed in the paper stay in consistency with the general theoretical con-
siderations presented recently in [20]. Experimental tests for three different relatively
fast reference trajectories have been conducted in the laboratory setup equipped with
a vision feedback. The results obtained during experiments revealed substantial quality
improvement in position trajectory tracking for a differentially-driven vehicle moving in
the presence of persistently affecting skid-slip phenomena.

Appendix

To shorten subsequent formulas the following notation will be used: sβ ≡ sin β, cβ ≡
cos β.

Construction of the norm ‖ r‖. Recalling (24) and since u2 = g∗T
2 H∗ ≡ ‖H∗‖ cos α,

where α = ∠(g∗
2,H

∗) we have:

r = H∗ − g∗
2u2 =

[

H2

H3

]

−

[

u2cθ
u2sθ

]

= ‖H∗‖

[

H2

‖H∗‖ − cαcθ
H3

‖H∗‖ − cαsθ

]

.

Hence, one can write:

‖ r‖2 = ‖H∗‖2

[

H2
2

‖H∗‖2 −
2H2cαcθ

‖H∗‖
+ c2αc2θ +

H2
3

‖H∗‖2 −
2H3cαsθ

‖H∗‖
+ c2αs2θ

]

=

= ‖H∗‖2

[

1 − 2cα
g∗T

2 H∗

‖H∗‖
+ c2α

]

= ‖H∗‖2 (

1 − 2c2α + c2α
)

= ‖H∗‖2 (

1 − c2α
)

and finally ‖ r‖ = ‖H∗‖
√

1 − cos2 α(θ) = ‖H∗‖ γ(θ), since α = α(θ) = ∠(g∗
2(θ),H∗).
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Convergence of function γ(θ). Since γ(θ) =
√

1 − cos2 α(θ), we obtain:

γ2(θ) = 1 − cos2 α(θ) = 1 −
(H2cθ + H3sθ)2

‖H∗‖2 ‖ g∗
2(θ)‖2 =

(H2sθ − H3cθ)2

H2
2 + H2

3

.

Recalling (23) we have θ(τ) → θa(τ) for τ → ∞ and from (15) one can obtain:
limθ→θa

tan θ = (H3/H2) ⇒ limθ→θa
sin θ = (H3 cos θ)/H2, which substituted into

the preceding equation allows concluding: limθ→θa
γ(θ) = 0.
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Figure 5: ExpA: Time plots of selected signals ((b)–black, (g)–gray) for the small circle trajec-
tory
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Figure 6: ExpA: Time plots of quality functionals and the geometrical paths drawn by the vehicle
within the first ON/OFF compensation sequence (reference path denoted by the dashed line)
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within the second ON/OFF compensation sequence (reference path denoted by the dashed line)
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Figure 8: ExpB: Time plots of selected signals ((b)–black, (g)–gray) for the big circle trajectory
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Figure 9: ExpB: Time plots of quality functionals and the geometrical paths drawn by the vehicle
within the first ON/OFF compensation sequence (reference path denoted by the dashed line)
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line)
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Figure 11: ExpC: Time plots of selected signals ((b)–black, (g)–gray) for the elliptical trajectory
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Figure 12: ExpC: Time plots of quality functionals and the geometrical paths drawn by the ve-
hicle within the first ON/OFF compensation sequence (reference path denoted by the dashed
line)
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Figure 13: ExpC: Time plots of quality functionals and the geometrical paths drawn by the ve-
hicle within the second ON/OFF compensation sequence (reference path denoted by the dashed
line)
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