< 日 > < 同 > < 回 > < 回 > < 回 > <

Unified approach to trajectory tracking and set-point control for a front-axle driven car-like mobile robot

2011 American Control Conference San Francisco, USA, June 29 – July 01, 2011

This work was supported in part by the Polish scientific fund in years 2010-2012 as the research project No. N N514 087038

Maciej Michałek and Krzysztof Kozłowski

Chair of Control and Systems Engineering Poznan University of Technology (PUT) Poznań, Poland

M. Michałek, K. Kozłowski (PUT)

- 2 General control structure
- 3 VFO method application
 - Simulation results

Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ ののべ

Introduction

- General control structure
- 3 VFO method application
- 4) Simulation results

5 Remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation

For the car-like kinematics we are looking for:

- A unified control law which allows solving both tracking and regulation control tasks
- Intuitive control strategy with interpretable control components
- Solution not requiring any state transformation
- Resultant closed-loop system with predictable, non-oscillatory, and fast transients
- Controller which is easily tunable

Proposition: cascaded solution using the Vector-Field-Orientation (VFO) approach

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ◇ ◇ ◇

Front-Driven (FD) car-like mobile robot

$$\begin{bmatrix} \dot{\beta} \\ \dot{\theta} \\ \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} u_1 + \begin{bmatrix} 0 \\ \frac{1}{L} \sin \beta \\ \cos \beta \cos \theta \\ \cos \beta \sin \theta \end{bmatrix} u_2$$
(1)

Configuration vector

$$\boldsymbol{q} = [\beta \ \theta \ x \ y]^T \in [-\beta_m, \beta_m] \times \mathbb{R} \times \mathbb{R}^2$$
 (2)

 $\begin{array}{l} \beta_m < \frac{\pi}{2} : \text{constrained motion curvature} \\ \beta_m = \infty : \text{unlimited motion curvature} \ (\beta \in \mathbb{R}) \\ \beta_m = \frac{\pi}{2} : \text{unlimited mot. curvature but simpler steering mechanism} \end{array}$

L > 0 – wheel base P – guidance point

Control input

$$\boldsymbol{u} = [u_1 \ u_2]^T \triangleq [\omega_\beta \ v] \in \mathbb{R}^2$$
 (3)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ◇ ◇ ◇

Control problem – assumptions

Assumptions

- A1. The reference $q_t = [\beta_t \ \theta_t \ x_t \ y_t]^T \in [-\beta_m, \beta_m] \times \mathbb{R} \times \mathbb{R}^2$:
 - $\boldsymbol{q}_t := [\beta_t(\tau) \; \theta_t(\tau) \; x_t(\tau) \; y_t(\tau)]^T = \boldsymbol{q}_t(\tau)$ for the tracking task
 - $q_t(\tau)$ is a solution of $\dot{q}_t(\tau) = g_1 u_{1t}(\tau) + g_2(q_t(\tau)) u_{2t}(\tau)$
 - $q_t(\tau)$ is sufficiently smooth such that: $\dot{u}_{1t}(\tau), \dot{u}_{2t}(\tau), \ddot{u}_{2t}(\tau) \in \mathcal{L}_{\infty}$
 - $q_t(\tau)$ is persistently exciting: $\forall \tau \ge 0 \ u_{2t}(\tau) \cos \beta_t(\tau) \ne 0$
 - $\boldsymbol{q}_t := [0 \; \theta_t \; x_t \; y_t]^T$ for the regulation task
- A2. all components of configuration q are measurable
- A3. parameter value L is perfectly known

Control problem – definition

Problem definition

Given a reference q_t , determine a feedback control law $u = u(q_t, q, \cdot)$ for FD car-like kinematics, which guarantees convergence of the configuration error

$$\boldsymbol{e}(\tau) = \begin{bmatrix} e_{\beta}(\tau) \\ e_{\theta}(\tau) \\ e_{x}(\tau) \\ e_{y}(\tau) \end{bmatrix} = \begin{bmatrix} e_{\beta}(\tau) \\ \overline{\boldsymbol{e}}(\tau) \end{bmatrix} \triangleq \begin{bmatrix} \beta_{t} - \beta(\tau) \\ f_{\theta}(\theta_{t} - \theta(\tau)) \\ x_{t} - x(\tau) \\ y_{t} - y(\tau) \end{bmatrix}$$
(4)

in the sense that

$$\lim_{\tau \to \infty} \| \boldsymbol{e}(\tau) \| \leqslant \epsilon, \qquad \epsilon \geqslant 0, \tag{5}$$

where: $f_{\theta}(\cdot) : \mathbb{R} \mapsto \mathbb{S}^1$, and ϵ is some vicinity of the origin.

 $\epsilon = 0 \Rightarrow \text{asymptotic convergence}$

 $\epsilon > 0 \Rightarrow {\rm practical \ convergence \ (ultimate \ boundedness)}$

Introduction

2 General control structure

3 VFO method application

4 Simulation results

5 Remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Control design principle

Main concept

Design the feedback control law for the FD car-like kinematics using the unicycle feedback controller applied to the vehicle body subsystem.

Three main design steps:

- Reformulation of control inputs and decomposition of the car-like kinematics
- Application of a unicycle feedback law to the vehicle-body subsystem (VFO method)
- Recovering original inputs of the car-like kinematics

Step1: reformulation of the FD car-like kinematics

Fictitious inputs of the vehicle body

$$u_2(1/L)\sin\beta =: v_1 \tag{6}$$

$$u_2 \cos \beta =: v_2 \tag{7}$$

 \boldsymbol{v}_1 – angular velocity of the vehicle body

 v_2 – longitudinal velocity of point ${\rm P}$

Decomposed FD kinematics

$$\dot{\beta} = u_1,$$
 (8)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

(9) is the vehicle-body unicycle-like subsystem (!)

Vehicle configuration decomposed into: body configuration $\overline{q} = [\theta \ x \ y]^T$ and steering wheel angle β (internal variable)

Step2: fictitious inputs defined as feedback functions for vehicle body

To guarantee that the vehicle body configuration \overline{q} will converge to the reference \overline{q}_t we define:

$$v_1 \triangleq \Phi_1(\overline{q}_t, \overline{q}, \cdot), \qquad v_2 \triangleq \Phi_2(\overline{q}_t, \overline{q}, \cdot),$$
 (10)

where $\Phi_1(\bar{q}_t, \bar{q}, \cdot)$ and $\Phi_2(\bar{q}_t, \bar{q}, \cdot)$ are the differentiable feedback control functions for the vehicle body subsystem, which applied for the unicycle-like kinematics

$$\begin{bmatrix} \dot{\theta} \\ \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Phi_1(\overline{q}_t, \overline{q}, \cdot) + \begin{bmatrix} 0 \\ \cos \theta \\ \sin \theta \end{bmatrix} \Phi_2(\overline{q}_t, \overline{q}, \cdot)$$

ensure that

$$\lim_{\tau \to \infty} \| \, \overline{\boldsymbol{q}}_t(\tau) - \overline{\boldsymbol{q}}(\tau) \| = 0.$$

We propose to design $\Phi_1(\overline{q}_t, \overline{q}, \cdot)$ and $\Phi_2(\overline{q}_t, \overline{q}, \cdot)$ according to the VFO control strategy.

Step3a: recovering the original input u_2 and the steering angle formula

After substitution $v_1 := \Phi_1$ and $v_2 := \Phi_2$ one obtains:

$$u_2(1/L)\sin\beta = \Phi_1 \tag{11}$$

$$u_2 \cos \beta = \Phi_2 \tag{12}$$

 $u_2 = \Phi_2 \cos\beta + L\Phi_1 \sin\beta \tag{13}$

$$\beta = \arctan\left(\frac{L\Phi_1}{\Phi_2}\right) \quad \text{for} \quad \sqrt{\Phi_1^2 + \Phi_2^2} \neq 0$$
 (14)

Since (14) cannot be met instantaneously we introduce the auxiliary steering variable

$$\beta_a \triangleq \arctan\left(\frac{L\Phi_1}{\Phi_2}\right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad \text{for} \quad \sqrt{\Phi_1^2 + \Phi_2^2} \neq 0 \tag{15}$$

and the auxiliary steering error

$$e_{\beta a} \triangleq \beta_a - \beta \tag{16}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ◇ ◇ ◇

Now, to satisfy (14) it suffices to make $e_{\beta a}$ converge to zero.

Step3b: definition for the original input u_1

Since the steering dynamics are $\dot{\beta}=u_1$ let us define the steering inputs as follows:

$$u_1 \triangleq k_\beta \, e_{\beta a} + \dot{\beta}_a, \qquad k_\beta > 0,\tag{17}$$

where k_{β} is a design parameter, and

$$\dot{\beta}_a = \frac{L(\dot{\Phi}_1 \Phi_2 - \Phi_1 \dot{\Phi}_2)}{L^2 \Phi_1^2 + \Phi_2^2} \quad \text{for} \quad \sqrt{\Phi_1^2 + \Phi_2^2} \neq 0$$
(18)

is a feed-forward term.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ◇ ◇ ◇

Resultant control law for FD car-like kinematics

steering controller:	$u_1 = k_eta e_{eta a} + \dot{eta}_a$	(19)
driving controller:	$u_2 = \Phi_2 \cos\beta + L\Phi_1 \sin\beta$	(20)

Particular form of control law (19)-(20) results from definitions of feedback functions Φ_1 and Φ_2 ...

M. Michałek, K. Kozłowski (PUT)

Introduction

- General control structure
- VFO method application
 - 4 Simulation results
 - 5 Remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

VFO controller for unicycle kinematics*

*M. Michałek, K. Kozłowski: Vector-Field-Orientation feedback control method for a differentially driven vehicle, IEEE Trans. Control Sys. Techn., 18(1), 2010

orienting control:
$$\Phi_1 \triangleq k_\theta e_{\theta a} + \dot{\theta}_a$$
 (21)

pushing control:
$$\Phi_2 \triangleq h_x \cos \theta + h_y \sin \theta$$
 (22)

For tracking task

$h_x = k_p e_x + v_x, \quad v_x = \dot{x}_t$ (23) $h_y = k_p e_y + v_y, \quad v_y = \dot{y}_t$ (24) $e_{\theta a} = \theta_a - \theta$ (25) $\theta_a = \text{Atan2c} (\sigma \cdot h_y, \sigma \cdot h_x)$ (26) $\dot{\phi} = \dot{x}_t + \dot{x}_t +$

 $\dot{\theta}_a = (\dot{h}_y h_x - h_y \dot{h}_x) / (h_x^2 + h_y^2)$ (27)

$$\sigma \stackrel{\Delta}{=} \operatorname{sgn}(v_{2t}) = \operatorname{sgn}(u_{2t} \cos \beta_t) \quad (28)$$

For regulation task (almost stabilizer)

$$h_x = k_p e_x + v_x, \quad v_x = -\eta \sigma \| \overline{e}^* \| \cos \theta_t \quad (29)$$

$$h_y = k_p e_y + v_y, \quad v_y = -\eta \sigma \| \overline{e}^* \| \sin \theta_t$$
 (30)

$$e_{\theta a} = \theta_a - \theta \tag{31}$$

$$\theta_a = \operatorname{Atan2c}\left(\sigma \cdot h_y, \sigma \cdot h_x\right) \tag{32}$$

$$\dot{\theta}_a = (\dot{h}_y h_x - h_y \dot{h}_x) / (h_x^2 + h_y^2)$$
 (33)

$$\sigma \triangleq \operatorname{sgn}(e_{x0}\cos\theta_t + e_{y0}\sin\theta_t) \tag{34}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ◇ ◇ ◇

Design coefficients: $k_{\theta} > k_p > 0$ and $\eta \in (0, k_p)$ Decision factor $\sigma \in \{-1, +1\}$

$$\begin{split} &\operatorname{Atan2c}\left(\cdot,\cdot\right):\mathbb{R}\times\mathbb{R}\mapsto\mathbb{R}\\ &\left\|\left.\overline{\boldsymbol{e}}^*\right\|=\sqrt{e_x^2+e_y^2} \right. \end{split}$$

VFO control – geometrical interpretations for the unicycle

trajectory tracking
$$(k_n=1)$$

set-point regulation $(k_p = 1)$

$$\overline{\boldsymbol{h}}^* = [h_x \ h_y]^T, \quad \overline{\boldsymbol{e}}^* = [e_x \ e_y]^T, \quad \overline{\boldsymbol{v}}^* = [v_x \ v_y]^T, \quad \dot{\overline{\boldsymbol{q}}}^* = [\dot{x} \ \dot{y}]^T = v_2 [\cos\theta \ \sin\theta]^T$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Introduction

- General control structure
- 3 VFO method application

Simulation results

5 Remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sim1: trajectory tracking (forward motion)

M. Michałek, K. Kozłowski (PUT)

19/24

Sim2: parking maneuvers (backward motion)

M. Michałek, K. Kozłowski (PUT)

Time plots of $\| \bar{e}(\tau) \|$ after applying in the controller the nominal $(L_s := L)$, 50% overestimated $(L_s := 1.50L)$, and 50% underestimated $(L_s := 0.5L)$ robot parameter, adding simultaneously the white Gaussian measurement noises to feedback signals with standard deviation Std = 0.001 rad

Introduction

- General control structure
- 3 VFO method application
- Simulation results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Final remarks

- Presented approach as an extension of the VFO application to FD car-like kinematics
- Trajectory tracking and set-point regulation treated in the unified manner
- General control structure allows applying alternative unicycle controllers**
- Application of the method to the rear-driven car-like kinematics possible**

**M. Michałek, K. Kozłowski: Feedback control framework for car-like robots using the unicycle controllers, accepted for publication in Robotica, 2011

Thank you for attention

M. Michałek, K. Kozłowski (PUT)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨヨ ののべ

Definitions (15) and time-derivative (18) are not determined for time instants $\underline{\tau}$ when $\Phi(\underline{\tau}) = 0$. In this case one can introduce additional definitions, for example $\beta_a(\underline{\tau}) := \lim_{\tau \to \underline{\tau}} \beta_a(\tau)$ and $\dot{\beta}_a(\underline{\tau}) := 0$ activated for all $\underline{\tau}$ when $\| \Phi(\underline{\tau}) \| = 0$. In practice, one may prefer replace the last condition by $\| \Phi(\underline{\tau}) \| < \delta$ with $\delta > 0$ being a sufficiently small vicinity of zero.

To cope with the indeterminacy of terms θ_a and $\dot{\theta}_a$ when $\overline{h}^* = 0$ we propose to introduce additional definitions for θ_a and $\dot{\theta}_a$ in a small ε -vicinity of point $\overline{h}^* = 0$ as follows:

$$\theta_a \triangleq \theta_a(\tau^-) \quad \text{and} \quad \dot{\theta}_a \triangleq 0 \quad \text{for} \quad \left\| \overline{\mathbf{h}}^* \right\| < \varepsilon,$$
(35)

with $0 < \varepsilon < \inf_{\tau} |u_{2t}(\tau) \cos \beta_t(\tau)|$, and τ^- being determined by $\left\| \overline{h}^*(\tau^-) \right\| = \varepsilon$. Note that other definitions together with the control input ones remain unchanged. Since the indeterminacy point is non-attracting and non-persistent, all the convergence results stay valid.

In the regulation case definitions for θ_a and $\dot{\theta}_a$ are not defined for $\bar{e}^* = 0$. Since the point $\bar{e}^* = 0$ is reachable only at infinity, the VFO set-point controller belongs to the so-called *almost stabilizers*. Although in practice, one may need a well defined controller also at this point. Introducing definitions

$$\theta_a \triangleq \theta_a(\tau_\kappa), \quad \dot{\theta}_a \triangleq 0, \quad \beta_a = \dot{\beta}_a \triangleq 0, \quad u_2 \triangleq 0$$
(36)

being active for $\tau \ge \tau_{\kappa}$ where $\|\overline{e}^*(\tau \ge \tau_{\kappa})\| < \kappa$ with some assumed $\kappa > 0$, leads to the ultimate boundedness of error (4) solving the control problem with $\epsilon = \epsilon(\kappa, e_{\theta}(\tau_{\kappa})) > 0$ and with $\lim_{\tau \to \infty} e_{\beta}(\tau) = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ◇ ◇ ◇