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Abstract

This note is a complement to the convergence analysis included in [2] (and also in [1] and [3]). The supple-
mentary material concerns convergence analysis of the unicycle orientation error when the vehicle is controlled
in a closed-loop system with the Vector-Field-Orientation (VFO) control law. Formal considerations presented
in this note show the terminal convergence of the orientation error to zero in the case of a set-point control task
(convergence to the fixed reference orientation).

1 Introduction

The objective of this note is to complement the convergence analysis conducted in [2]. Attention is paid on the
convergence of the orientation error e1 for a case of the set-point control task (considered in Section V of [2] on pages
52-54). In contrast to the original formulation presented in [2] we show convergence of the orientation error e1 making
the analysis by using particular terms expressed in the local frame attached to the reference vehicle (fixed at the
reference posture). Notation used in the sequel is almost the same as introduced in [2] in order to preserve coherency
of our considerations (only some slight modifications are made for convenience – they will be strictly indicated in
Subsection 1.1). The subsequent reasoning will be based on the partial results presented in [2]. References to equations
taken from [2] will be denoted by ’{·}’.

Section 3 is devoted to the orientation error convergence analysis in the special case when the finite-time conver-
gence of the position error components together with the control input limitations are assumed. This part of the note
complements considerations presented in [1] and [3]. References to equations taken from paper [1] will be denoted by
’< · >’.

1.1 Notation

The term sgn(k) introduced in [2], for example in definition {52}, will be now denoted by σ and it will be called
the decision factor (its value determines the motion strategy (forward/backward) of the controlled vehicle). Note
also that the terms ep and hp used in this note and in [2] are often denoted in other our publications by e∗ and h∗,
respectively (as in [1] and [3]).

2 Convergence analysis for the orientation error

Let us first redefine the decision factor introduced in {52} as follows:

σ , sgn(et20) ≡ sgn(etx0) = sgn(ex(0) cosϕt + ey(0) sinϕt) ∈ {−1,+1}, (1)

where et20 ≡ etx0 = etx(τ = 0) is an initial error component along x-axis but expressed in the local frame attached

to the reference vehicle (in contrast to {52} where the initial error component was expressed in the global
frame). Definition (1) guarantees convergence of the orientation error for all the vehicle initial conditions defined by
Proposition 2 in [2] on page 52.
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In order to show the convergence of the orientation error, recall equation {56} which for ea → 0 takes the form
(we use here the results from {57} and {55}):

ėp = −kpep − q̇∗
vt (2)

hence according to {44}, {45} and {47} (with ρ = η):

ėx = −kpex + ησ ‖ ep‖ cosϕt, (3)

ėy = −kpey + ησ ‖ ep‖ sinϕt. (4)

One can express position error ep in the local frame as follows

etp =

[

etx
ety

]

, RTep =

[

cosϕt sinϕt

− sinϕt cosϕt

] [

ex
ey

]

, (5)

where etp is the vehicle position error expressed in the local frame attached to the reference vehicle. Differentiating
(5) with respect to time and using (3)-(4) one obtains (for ea = 0) the dynamics of the position error components
expressed in the local frame (see Appendix 4.1):

ėtx = −kpe
t
x + ησ ‖ ep‖ , (6)

ėty = −kpe
t
y, (7)

where ‖ ep‖ =
√

e2x + e2y ≡
√

et2x + et2y . According to the above result we can formulate the following corollaries:

C1) ety(τ) converges to zero independently of etx(τ) and terminally passes etx(τ),

C2) using (1) in (6) gives: ėtx = −kpe
t
x + η sgn(etx0) ‖ ep‖; hence (since η > 0) the solution etx(τ) preserves its initial

sign, namely:
∀τ≥0 sgn(etx(τ)) = sgn(etx0), (8)

C3) terminally, for ety ≈ 0, one can write: ėtx ≈ −kpe
t
x + η sgn(etx0) |etx|, and according to (8) one obtains: ėtx ≈

−kpe
t
x + η sgn(etx) |etx| = −kpe

t
x + η etx = −(kp − η)etx. Thus the decay time-constant for solution etx(τ) is

approximately equal to Tx = 1/(kp − η) and for η ∈ (0, kp) it is lower than Ty = 1/kp in (7) – terminally, etx(τ)
decays (converges to zero) slower then ety(τ).

Combining (6)-(7) and C3) allows one to conclude that selection of parameter η simultaneously influences the
passing effect (the higher η, the earlier ety(τ) passes etx(τ) in time) and the resultant convergence rate for etx(τ) and
consequently for ‖ ep(τ)‖.

The partial results obtained so far will be used later on in the convergence analysis for orientation error e1. Let us
proceed our reasoning by transformation of the convergence vector field hp into the local reference frame (similarly
as it was done for the position error):

ht
p =

[

ht
x

ht
y

]

, RThp =

[

cosϕt sinϕt

− sinϕt cosϕt

] [

hx

hy

]

, (9)

where ht is the convergence vector field expressed in the local frame attached to the reference vehicle. By defining
the angle β = Arg(ht

p) , Atan2
(

ht
y, h

t
x

)

we obtain:

tanβ =
ht
y

ht
x

(9)
=

hy cosϕt − hx sinϕt

hy sinϕt + hx cosϕt

=

(

hy

hx
− tanϕt

)

hx cosϕt

(

hy

hx
tanϕt + 1

)

hx cosϕt

=
tanϕa − tanϕt

1 + tanϕa tanϕt

= tan(ϕa − ϕt).

Hence, as a direct consequence one can write:

tan(ϕa(τ) − ϕt) =
ht
y(τ)

ht
x(τ)

. (10)

Now, using the above equation we are going to show that ht
y(τ) tends to zero faster than ht

x(τ) which implies that
tan(ϕa(τ) − ϕt) terminally tends toward zero as τ → ∞. Using (9) and recalling {25} together with {44}, {45}, and
{47} (for ρ = η) one obtains (after simple calculations and using (5)):

ht
p =

[

ht
x

ht
y

]

=

[

cosϕt sinϕt

− sinϕt cosϕt

] [

kpex − ησ ‖ ep‖ cosϕt

kpey − ησ ‖ ep‖ sinϕt

]

=

[

kpe
t
x − ησ

√

et2x + et2y

kpe
t
y

]

=

[

−ėtx
−ėty

]

, (11)
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where the last equation results from (6) and (7). Hence, we can rewrite (10) as

tan(ϕa(τ) − ϕt) =
ht
y(ety(τ))

ht
x(etx(τ), ety(τ))

=
−ėty(τ)

−ėtx(τ)
=

kpe
t
y(τ)

kpetx(τ) − ησ
√

et2x (τ) + et2y (τ)
. (12)

Now, since etx(τ) → 0 and ety(τ) → 0 for τ → ∞1 but, according to corollary C1), ety(τ) terminally passes etx(τ) one
concludes that

tan(ϕa(τ) − ϕt) → 0 as τ → ∞. (13)

Relation (13) together with the convergence result (ϕa(τ) − ϕ(τ)) → 0 (see {55}) allows concluding that

tan(ϕ(τ) − ϕt) → 0 as τ → ∞. (14)

Obviously, (14) still does not mean that e1(τ) = fe(ϕt(τ) − ϕ) → 0 for τ → ∞, since (14) can be met also for
e1(τ) → ±π. However, it can be additionally shown that terminally for ea(τ), ey(τ), ex(τ) → 0 (or equivalently for
ea(τ), ety(τ), etx(τ) → 0) the sign sgn(g∗T

2t g
∗
2) = sgn(cos(ϕ − ϕt)) = sgn(cos(ϕt − ϕ)) is equal to +1, which along

with (14) will allow concluding terminal convergence (ϕ(τ)−ϕt) → 0 mod 2π, and consequently convergence of e1(τ)
toward zero. Since g∗

2 = q̇∗/u2 = [ẋ/u2 ẏ/u2]T (see {11}) one can write:

sgn(g∗T
2t g

∗
2) = sgn(u2)sgn(ẋ cosϕt + ẏ sinϕt).

Using the fact that u2 = σ ‖hp‖ cos ea (see Appendix 4.2) we write the above equation at the limit for ea → 0 as2:

lim
ea→0

sgn(g∗T
2t g

∗
2(ϕa − ea)) = lim

ea→0
sgn(u2(ea))sgn(ẋ(ea) cosϕt + ẏ(ea) sinϕt) =

= σ sgn(hx cosϕt + hy sinϕt)
(9)
= σ sgn(ht

x) =

(11)
= σ sgn(kpe

t
x − ησ

√

et2x + et2y ), (15)

where g∗
2(ϕ) = g∗

2(ϕa − ea) since ea , ϕa − ϕ. Because ety(τ) terminally passes etx(τ) we can write

lim
etx,e

t
y→0

(

lim
ea→0

sgn(g∗T
2t g

∗
2)

)

(15)
= lim

etx→0
lim
ety→0

σ sgn(kpe
t
x − ησ

√

et2x + et2y ) =

= lim
etx→0

σ sgn(kpe
t
x − ησ

√

et2x ) = lim
etx→0

σ sgn(kpe
t
x − ησ

∣

∣etx
∣

∣) =

(1)
= lim

etx→0
sgn(etx0) sgn(kpe

t
x − η sgn(etx0)

∣

∣etx
∣

∣) =

(8)
= lim

etx→0
sgn(etx0) sgn(kpe

t
x − η sgn(etx)

∣

∣etx
∣

∣) =

= lim
etx→0

sgn(etx0) sgn(etx) sgn(kp − η) =

(8)
= lim

etx→0
sgn2(etx0) sgn(kp − η) = 1, (16)

where in the last stage we have used the fact that η ∈ (0, kp) from assumption (see {46}).

Combination of the results (14) and (16) allows concluding about terminal convergence of the orientation error
e1(τ) , fe(ϕt − ϕ(τ)) ∈ S

1 (see {8}):
e1(τ) → 0 as τ → ∞. (17)

It is consistent with the statement presented in our original work [2] on page 54.

Remark 1 In (1) we have introduced an alternative definition for the decision variable σ (in comparison to eq. {52}
in [2]), which allowed us to show the terminal convergence of the orientation error e1 when ‖ ep‖ → 0 (ǫ := 0 in
{62}). However, it is not always required to use (1) for motion strategy selection. In fact, the decision factor σ can be
freely selected regardless of the vehicle initial condition excluding the special case, which is related to situation where

ety(0) = 0 ∧ e1(0) = ±π.

In this case usage of definition (1) ensures terminal convergence of the orientation error as stated in (17), while usage
of definition proposed in {52} generally does not.

1It is evident using (5) and since ‖ ep(τ)‖ → 0 as τ → ∞ (see {59}).
2According to {31} ea → 0 arbitrarily fast and independently of e∗(τ).
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3 Convergence of the orientation error under conditions of the finite-
time position error convergence and in the presence of control input
limitations

In this section we use the original notation introduced in [1], namely: e∗ for the position error vector, and h∗ for
the convergence vector field. However, the term sgnU2 used in [1] is replaced here by the symbol σ and it is called
the decision factor. According to equation < 27 > and definition < 15 > formulated in [1] we obtain the following
position error dynamics valid for ea → 0:

ėx = ρ s (−kpex + ησ ‖ e∗‖ cosϕt), (18)

ėy = ρ s (−kpey + ησ ‖ e∗‖ sinϕt), (19)

where σ is now defined in (1), ρ = ρ(‖ e∗‖) and s ∈ (0, 1] are some scalar strictly positive functions. Function ρ
is responsible for the finite-time convergence of ex and ey to zero, while s is a scaling function resulting from the
presence of control input limitations (see [1] and [3] for details). Clearly, (18)-(19) are similar to (3)-(4), thus using
the transformation (5) yields:

ėtx = ρ s (−kpe
t
x + ησ ‖ e∗‖), (20)

ėty = ρ s (−kpe
t
y). (21)

Since s and ρ are strictly positive, the corollary C1) and condition (8) remain valid also for dynamics (20)-(21). In
the case of finite-time convergence the corollary C1) leads to:

lim
τ→τx

etx(τ) = 0, lim
τ→τy

ety(τ) = 0, τy < τx < ∞, (22)

where τx and τy are the finite time-instants. Using (11), one can obtain the same relation as in (12), namely:

tan(ϕa(τ) − ϕt) =
kpe

t
y(τ)

kpetx(τ) − ησ
√

et2x (τ) + et2y (τ)
. (23)

Due to the finite-time convergence (22) and due to the form of (23) relation (13) takes in the considered case the
following form:

tan(ϕa(τ) − ϕt) → 0 as τ → τy, τy < ∞. (24)

Since the error ea(τ) = (ϕa(τ) − ϕ(τ)) → 0 in finite time as τ → τa (see < 26 > in [1]) we can rewrite (24) as

tan(ϕ(τ) − ϕt) → 0 as τ → τ∗, τ∗ ≤ τy + τa. (25)

Since C1) and (8) remain valid in the finite-time case, relation (16) holds3 also in case of dynamics (20)-(21):

lim
ea→0

sgn(g∗T
2t g

∗
2(ϕa − ea)) = σ sgn(kpe

t
x − ησ

√

et2x + et2y ) (26)

and

lim
etx,→0

lim
ety→0

(

lim
ea→0

sgn(g∗T
2t g

∗
2(ϕa − ea))

)

= lim
etx→0

sgn2(etx0) sgn(kp − η) = 1, (27)

where the intermediate computations (omitted here) are analogous as for the infinite-time case. Note that now
relation (26) holds in the finite time for τ ≥ τa, where τa < ∞ has been estimated in < 26 >.

According to the above reasoning the conclusion (17) is preserved, but now within the finite-time horizon [0, τ∗],
namely:

e1(τ) → 0 as τ → τ∗, where τ∗ ≤ τy + τa < ∞ (28)

with τy introduced in (22) and τa estimated in < 26 >.
Obviously, in the special case for s ≡ 1 (lack of control input limitations) all the analysis conducted so far along

with the main conclusion (28) remain valid.

3Note that now u2 = s ρ ‖h∗‖ cosα = σ s ρ ‖h∗‖ cos ea and s, ρ are strictly positive functions (see < 22 >), thus sgn(u2) = sgn(σ) for
ea → 0.
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4 Appendix

4.1 Derivation of relations (6)-(7)

Differentiating with respect to time the particular rows of (5) and using the right-hand sides of (3)-(4) one obtains:

ėtx = ėx cosϕt + ėy sinϕt =

= (−kpex + ησ ‖ ep‖ cosϕt) cosϕt + (−kpey + ησ ‖ ep‖ sinϕt) sinϕt =

= −kp(ex cosϕt + ey sinϕt) + ησ ‖ ep‖ = −kpe
t
x + ησ ‖ ep‖

and

ėty = −ėx sinϕt + ėy cosϕt =

= −(−kpex + ησ ‖ ep‖ cosϕt) sinϕt + (−kpey + ησ ‖ ep‖ sinϕt) cosϕt =

= −kp(−ex sinϕt + ey cosϕt) = −kpe
t
y.

4.2 Alternative expression for control signal u2

Let us start with an alternative form of u2 and try to obtain, after simple manipulations and using ea , ϕa − ϕ, its
original form proposed in [2]:

u2 := σ ‖hp‖ cos ea = σ ‖hp‖ cos(ϕa − ϕ) = σ ‖hp‖ (cosϕa cosϕ + sinϕa sinϕ) =

= σ ‖hp‖ [cosϕa sinϕa]

[

cosϕ
sinϕ

]

= σ ‖hp‖

[

σ hx

‖hp‖

σ hy

‖hp‖

]

g∗
2 = σ2 ‖hp‖

hT
p g

∗
2

‖hp‖
=

= ‖hp‖
hT
p g

∗
2

‖hp‖ ‖ g∗
2‖

= ‖hp‖
g∗T
2 hp

‖ g∗
2‖ ‖hp‖

= ‖hp‖ cosα,

where α = ∠(g∗,hp). Recalling definition {22} and formula {23} presented in [2] we can see that the two considered
alternative forms of the control input u2 are equivalent.
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