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Abstract: The problem of commanded velocity scaling in the cascaded control systems designed
for a 3-dimensional mobile robots is often neglected, yet it has a substantial influence on the
control performance in the transient stage. In this paper, we propose two scaling methods
satisfying the velocity and acceleration limitations of the commanded velocities, where the first
one is fully analytical and is based on chosen heuristics, while the second method depends on
solving the formulated optimization problem. Introduced methods are verified and compared in
the simulation study, followed by the experimental validation on the laboratory station equipped
with an autonomous airship.
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1. INTRODUCTION

In the real-life robotic applications, control signals are
practically bounded due to the physical limitations of
actuators that have been installed on the hardware. Most
of the control algorithms presented in the literature is not
equipped with any built-in security procedures preventing
the control signal to grow explosively in the transient state
of conducted experiments or simulations. Large values of
the calculated control signal may be caused by various
reasons, such as (i) peaking phenomenon in the high-
gain-observer-based controllers, (ii) very fast reference
trajectories that do not match physical limitations of
control object, (iii) incorrectly tuned controller parameters
or (iv) large initial errors transferred to the control signal
with the feedback controller. There are numerous papers
describing how to deal with peaking phenomenon (e.g.
Sussmann (1991)), but the simplest - although effective -
method that works well in practice is to keep the controller
inactive until the observer will go out of its transient
stage (see Huang (2014)). The solution for problems (ii)
and (iii) is to design a reference trajectory meeting the
physical limitations of the robotic platform and to tune the
controller parameters according to the design rules given
in the utilized algorithm description, respectively. In the
case of a large initial error values, the boundedness of a
feedback signal is most commonly achieved by passing the
error signal through the bounded function like saturation
or hyperbolic tangent function. Although an introduction
of such a simple saturation methods works well for linear
systems, it may destabilize a dynamic system in the case
of a nonlinear control systems. Main contribution of this
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paper is a proposition of two methods that will handle
the problem of large control signal values caused by the
reason (iv), and consider not only the velocity-amplitude
limitation (see �Lakomy (2017)), but also the velocity-rate
limitation. Due to the characteristic structure of cascaded
control systems (presented e.g. in Micha�lek (2017) and
Chen (2019)), the velocity scaling procedures utilized, e.g.,
in the trajectory planning (see Biagiotti (2008)) could also
be applied in the controller as a signal scaling methods.

The solution presented in this paper is addressed for the
torpedo-like mobile robots moving in the 3-dimensional
space (e.g. UAVs) with the cascaded control structure
performing the trajectory tracking task. A characteristic
feature of torpedo-like vehicle (for the definition, see Bech-
lioulis (2016)) is that there exists a priviliged direction of
motion according to the capabilities of force generation by
the installed actuator system. The consequence of separat-
ing the outer (kinematic-level) and inner (dynamic-level)
controllers in the cascade control structure is that the
output of the kinematic-level controller, interpreted as the
vector of commanded velocities, is usually passed directly
to the dynamic-level controller input as a reference. In the
case of a large initial errors, the kinematic-level controller
usually returns a very large commanded velocity values
that may be difficult to follow by the inner controller
due to the physical limitations of specific actuators (max-
imal thrust or not-fast-enough actuator dynamics). To
avoid this problem, we introduce the commanded veloc-
ity scaling procedures satisfying the amplitude-limitation
that guarantee the boundedness of maximal control signal
generated by a feedback part of the inner-loop controller,
and the rate-limitation preventing the rapid control signal
growth that may be impossible to follow. Additional ad-
vantage of the the proposed scaling procedures is that it
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krzysztof.pi.lakomy@doctorate.put.poznan.pl,
maciej.michalek@put.poznan.pl, wojciech.adamski@put.poznan.pl)

Abstract: The problem of commanded velocity scaling in the cascaded control systems designed
for a 3-dimensional mobile robots is often neglected, yet it has a substantial influence on the
control performance in the transient stage. In this paper, we propose two scaling methods
satisfying the velocity and acceleration limitations of the commanded velocities, where the first
one is fully analytical and is based on chosen heuristics, while the second method depends on
solving the formulated optimization problem. Introduced methods are verified and compared in
the simulation study, followed by the experimental validation on the laboratory station equipped
with an autonomous airship.

Keywords: velocity scaling, velocity and acceleration limitations, cascade control, robotics

1. INTRODUCTION

In the real-life robotic applications, control signals are
practically bounded due to the physical limitations of
actuators that have been installed on the hardware. Most
of the control algorithms presented in the literature is not
equipped with any built-in security procedures preventing
the control signal to grow explosively in the transient state
of conducted experiments or simulations. Large values of
the calculated control signal may be caused by various
reasons, such as (i) peaking phenomenon in the high-
gain-observer-based controllers, (ii) very fast reference
trajectories that do not match physical limitations of
control object, (iii) incorrectly tuned controller parameters
or (iv) large initial errors transferred to the control signal
with the feedback controller. There are numerous papers
describing how to deal with peaking phenomenon (e.g.
Sussmann (1991)), but the simplest - although effective -
method that works well in practice is to keep the controller
inactive until the observer will go out of its transient
stage (see Huang (2014)). The solution for problems (ii)
and (iii) is to design a reference trajectory meeting the
physical limitations of the robotic platform and to tune the
controller parameters according to the design rules given
in the utilized algorithm description, respectively. In the
case of a large initial error values, the boundedness of a
feedback signal is most commonly achieved by passing the
error signal through the bounded function like saturation
or hyperbolic tangent function. Although an introduction
of such a simple saturation methods works well for linear
systems, it may destabilize a dynamic system in the case
of a nonlinear control systems. Main contribution of this

� This work was supported by the statutory grant No.
09/93/DSMK/1902.

paper is a proposition of two methods that will handle
the problem of large control signal values caused by the
reason (iv), and consider not only the velocity-amplitude
limitation (see �Lakomy (2017)), but also the velocity-rate
limitation. Due to the characteristic structure of cascaded
control systems (presented e.g. in Micha�lek (2017) and
Chen (2019)), the velocity scaling procedures utilized, e.g.,
in the trajectory planning (see Biagiotti (2008)) could also
be applied in the controller as a signal scaling methods.

The solution presented in this paper is addressed for the
torpedo-like mobile robots moving in the 3-dimensional
space (e.g. UAVs) with the cascaded control structure
performing the trajectory tracking task. A characteristic
feature of torpedo-like vehicle (for the definition, see Bech-
lioulis (2016)) is that there exists a priviliged direction of
motion according to the capabilities of force generation by
the installed actuator system. The consequence of separat-
ing the outer (kinematic-level) and inner (dynamic-level)
controllers in the cascade control structure is that the
output of the kinematic-level controller, interpreted as the
vector of commanded velocities, is usually passed directly
to the dynamic-level controller input as a reference. In the
case of a large initial errors, the kinematic-level controller
usually returns a very large commanded velocity values
that may be difficult to follow by the inner controller
due to the physical limitations of specific actuators (max-
imal thrust or not-fast-enough actuator dynamics). To
avoid this problem, we introduce the commanded veloc-
ity scaling procedures satisfying the amplitude-limitation
that guarantee the boundedness of maximal control signal
generated by a feedback part of the inner-loop controller,
and the rate-limitation preventing the rapid control signal
growth that may be impossible to follow. Additional ad-
vantage of the the proposed scaling procedures is that it

21st IFAC Symposium on Automatic Control in Aerospace
August 27-30, 2019. Cranfield, UK

Copyright © 2019 IFAC 73

Copyright © 2019. The Authors. Published by Elsevier Ltd. All rights reserved.



74	 Krzysztof Łakomy  et al. / IFAC PapersOnLine 52-12 (2019) 73–78

will not allow the vehicle to move faster than the initially
defined maximal speed in the case of a trajectory that does
not meet safety requirements or physical limitations of the
vehicle.

In this paper we present the proposition and compar-
ison of two commanded velocity scaling methods. The
first one has an analytic form and depends on the pres-
elected heuristics, while the second one is formulated as
a quadratic programming optimization problem. In the
verification process of the proposed velocity scaling proce-
dures, we have used a cascaded VFO-ADR (Vector Field
Orientation - Active Disturbance Rejection), trajectory
tracking controller proposed by Micha�lek (2017) with the
velocity scaling function applied on the output of the
kinematic-level VFO controller.

For the sake of the notational conciseness, trigonometric
functions have been written in a shorten form: sα ≡ sinα,
cα ≡ cosα, tα ≡ tanα

2. PREREQUISITIES

2.1 Prerequisities

The description of a rigid-body vehicle position and ori-
entation in a 3D space demands an introduction of two
coordinate systems - a body-fixed local reference frame
{B} that has the origin in the center of the vehicle mass
C, and the global reference frame {G} (see Fig. 1). A
configuration vector defined as

ηηη � [x y z φ θ ψ]� =

[
ηηηp
ηηηo

]
∈ R4 ×

(
−π

2
,
π

2

)
× R, (1)

corresponds to the location of the body-related frame {B}
in the global coordinate system {G}, where ηηηp = [x y z]�

refers to the position of the vehicle center of mass, while
ηηηo = [φ θ ψ]� consist of the values of Euler angles (roll,
pitch, and yaw, respectively) that describe a robot atti-
tude. Kinematic equations transforming the velocity vec-
tors of the considered vehicle between introduced coordi-
nate frames are represented by

η̇ = J(η)ν, (2)

where ννν = [u v w p q r]� is the vector of a robotic platform
pseudovelocities expressed in the local coordinate frame
{B}, and J(η) = blkdiag{R(η), T(η)} is a Jacobian
matrix that consists of the rotation matrix

R(η) =

[
cψcθ cψsφsθ − cφsψ cψcφsθ + sφsψ
sψcθ sψsφsθ + cφcψ sψcφsθ − sφcψ
−sθ sφcθ cφcθ

]
, (3)

and the matrix of angular velocity vector transformation

T(η) =

[
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

]
. (4)

Remark 1. We assume that the configuration vector stays
within the domain introduced in (1) guaranteeing that the
matrix T (η) will not reach its singular points (θ = ±π

2 )
during the vehicle motion.

According to Fossen (1999), the general equations of the
robot dynamics in a body-fixed reference frame {B} may
be represented by

ν̇(t) = f(η, η̇, t) +BBBτ (t) (5)

where vector f(η, η̇, t) aggregates such phenomena as
Coriolis and centripetal accelerations, restoring effects, the
influence of gravity, environmental damping, disturbances
etc., while BBB ∈ R6×6 is the input matrix that corresponds
to the impact of control signal τττ = [τu τv τw τp τq τr]

�

on the dynamical system behavior. Due to the existence
of environmental damping forces and physical actuator
limitations, we know that the robot velocity vector η̇ηη is
bounded, satisfying the necessary conditions of the ADR
controller implementation.

Remark 2. In this paper, we do not impose any assump-
tions whether the system is fully- or underactuated. In the
notation utilized in (5), the information about actuation
type is incorporated in a specific form of B matrix (that
may be singular in case of underactuated system).

B

B

B

Fig. 1. A representation of a rigid body in the 3D space.

We assume that the priviliged direction of the torpedo-like
motion is induced by the application of main propulsion
along xB (surge motion) and around yB , and zB axes
(referring to the pitch and yaw angle changes). The forces
generated along yB (sway) and zB (heave) and around xB

(roll) axes have only a corrective function, if they can be
generated at all.

In this article we do not focus on any specific controller
design method, thus we will use the VFO-ADR trajectory
tracking cascaded controller that was initially described in
Micha�lek (2017).

The outer-loop kinematic-level controller is based on the
VFO concept, utilized for the torpedo-like vehicles in
Micha�lek (2017) and �Lakomy (2017). The output vector
returned by the VFO controller, i.e.,

νc � [uc wc vc pc qc rc]
� ∈ R6. (6)

will be called the vector of commanded velocities. The lon-
gitudinal torpedo-like motion should be performed along
xB axis implying

wc � 0 and vc � 0. (7)

The existance of a priviliged propulsion direction implies
the selection of orienting strategy in a way to set the xB

axis orientation tangentially to the reference trajectory.
As a result of definitions (7), we can introduce a reduced

vector of commanded velocities ν̄c = [ν1c ν2c ν3c ν4c]
� �

[uc pc qc rc]
� ∈ R4 to prevent excessively long notation in

the latter parts of this article.
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The inner-loop controller is designed according to the
error-based ADR method presented in Micha	lek (2016),
that was developped upon the original ADR methodology
described e.g. in Han (2009). The dynamic-level controller
is responsible for calculation of a vector of the desired
generalized forces τ (t), that depends only on the vehicle
configuration η defined in (1), and the scaled commanded
velocity

νs � [us 0 0 ps qs rs]
� ∈ R6. (8)

The νs vector corresponds to the commanded velocity
vector from (6) transformed in order to satisfy the selected
limitations described in Section 2.2. Analogously to νc, it
will be used in the following in its reduced version, i.e.,
ν̄ννs = [ν1s ν2s ν3s ν4s]

� � [us ps qs rs]
� ∈ R4. In order

to assure a specific, limited values of the vehicle velocity
vector νs, the original VFO-ADR control structure is
extended with the velocity scaling block, as can be seen
in Fig. 2.

2.2 Formulation of the scaling task

The scaled commanded velocity vector ν̄s, should fulfill
the amplitude limitations

∀t ≥ 0 |νis(t)| ≤ νim, νim > 0, i ∈ {1, ..., 4} (9)

to prevent large values of the velocity errors in the initial
transient stage. Also, to prevent the explosive growth of
the scaled commanded velocity components, we introduce
the velocity-rate limitations

∀t ≥ 0

∣∣∣∣
dνis(t)

dt

∣∣∣∣ ≤ aim, aim, i ∈ {1, ..., 4}. (10)

The constraints (9) and (10) imposed on the commanded
velocity vector are going to be satisfied by applying the
appropriate scaling methods described in the following
section.

3. SCALING METHODS

Let us assume, that there are no mutual relations between
the components of commanded velocity vector. Then ac-
cording to (9), we can define a hipercuboid subset of the

admissible velocities Dν � [−ν1m, ν1m] × [−ν2m, ν2m] ×
[−ν3m, ν3m]× [−ν4m, ν4m].

By integrating the velocity-rate limitation (10) within
some time interval (t2 − t1), we obtain the inequality

∫ νis(t2)

νis(t1)

|dνis| ≤
∫ t2

t1

aimdt, ∀(t2 − t1) > 0 (11)

which leads us to the relation

∀t ∈ [t1, t2] |νis(t2)− νis(t1)| ≤ aim(t2 − t1). (12)

From now on, we will be referring to τs(t) � (t2 − t1) as
to the delay time interval, and to

ν̃is(t) � aimτs(t) (13)

as to the instantenous maximal admissible change of
particular commanded velocity. In general the delay time
interval can be varying, but in special case (when we
deal with the discrete-time control implementation), it will
have a constant value equal to the sampling time.

Remark 3. Relation (12) refers to the mean velocity rate
limitation within the delay time interval τs(t). In this
paper, we assume that the interval τs(t) is much shorter
than any dynamical mode of the control plant, so the
velocity change between time instants t2 and t1 could be
well approximated by a constant or linear function. Under
these assumptions, inequality (12) can be treated as an
instantenous velocity rate limitation.

According to the inequality (12), we can define the time-

varying subset Da(t) � [−ν̃1s(t), ν̃1s(t)]×[−ν̃2s(t), ν̃2s(t)]×
[−ν̃3s(t), ν̃3s(t)]× [−ν̃4s(t), ν̃4s(t)] represtenting the admis-
sible region for the commanded velocity change at time t.

3.1 Velocity scaling method I

A preliminary concept limiting the vector of commanded
velocities to the subset Dν , i.e. satisfying (9), was proposed
in 	Lakomy (2017). In this paper, we are extending this idea
by introducing additional scaling factor that will preserve
the velocity-rate limitations introduced in (10).

Let us firstly define a velocity-amplitude scaling factor

sv(t) �

[
max

{
1,

|ν1c|
ν1m

,
|ν2c|
ν2m

,
|ν3c|
ν3m

,
|ν4c|
ν4m

}]−1

∈ (0, 1]

(14)

that scales the commanded velocity vector ν̄c(t), guaran-
teeing preservation of the commanded velocity magnitudes
from (9). The resulting prescaled vector of commanded
velocities is in the form

ν̄∗
c (t) = [ν∗1c(t) ν

∗
2c(t) ν

∗
3c(t) ν

∗
4c(t)]

�

� sv(t)ν̄c(t) ∈ Dν . (15)

To satisfy the velocity-rate limitations introduced in (10),
we need to define a change of the prescaled commanded
velocity vector, i.e.,

∆ν̄∗
c (t) � ν̄∗

c (t)− ν̄s(t− τs) (16)

and scale it with the second scaling factor

sa(t) �

[
max

{
1,
|ν∗1c(t)− ν1s(t− τs)|

ν̃1s
,

|ν∗2c(t)− ν2s(t− τs)|
ν̃2s

,

|ν∗3c(t)− ν3s(t− τs)|
ν̃3s

,

|ν∗4c(t)− ν4s(t− τs)|
ν̃4s

}]−1

∈ (0, 1] (17)

that will bring the scaled commanded velocity change

∆ν̄ννs(t) � sa(t)∆ν̄∗
c (t) = sa(t) [ν̄

∗
c (t)− ν̄s(t− τs)]

= sa(t) [sv(t)ν̄c(t)− ν̄s(t− τs)] (18)

to the admissible subset Da.

According to the scaling heuristics proposed in (15) and
(18), the final form of the scaled velocity vector can be
rewritten as the convex combination:

ν̄s(t) = ν̄s(t− τs) + ∆ν̄s(t)

(18)
= sa(t)sv(t)ν̄c(t) + (1− sa(t))ν̄s(t− τs) ∈ Dν .

(19)
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The inner-loop controller is designed according to the
error-based ADR method presented in Micha	lek (2016),
that was developped upon the original ADR methodology
described e.g. in Han (2009). The dynamic-level controller
is responsible for calculation of a vector of the desired
generalized forces τ (t), that depends only on the vehicle
configuration η defined in (1), and the scaled commanded
velocity

νs � [us 0 0 ps qs rs]
� ∈ R6. (8)

The νs vector corresponds to the commanded velocity
vector from (6) transformed in order to satisfy the selected
limitations described in Section 2.2. Analogously to νc, it
will be used in the following in its reduced version, i.e.,
ν̄ννs = [ν1s ν2s ν3s ν4s]

� � [us ps qs rs]
� ∈ R4. In order

to assure a specific, limited values of the vehicle velocity
vector νs, the original VFO-ADR control structure is
extended with the velocity scaling block, as can be seen
in Fig. 2.

2.2 Formulation of the scaling task

The scaled commanded velocity vector ν̄s, should fulfill
the amplitude limitations

∀t ≥ 0 |νis(t)| ≤ νim, νim > 0, i ∈ {1, ..., 4} (9)

to prevent large values of the velocity errors in the initial
transient stage. Also, to prevent the explosive growth of
the scaled commanded velocity components, we introduce
the velocity-rate limitations

∀t ≥ 0

∣∣∣∣
dνis(t)

dt

∣∣∣∣ ≤ aim, aim, i ∈ {1, ..., 4}. (10)

The constraints (9) and (10) imposed on the commanded
velocity vector are going to be satisfied by applying the
appropriate scaling methods described in the following
section.

3. SCALING METHODS

Let us assume, that there are no mutual relations between
the components of commanded velocity vector. Then ac-
cording to (9), we can define a hipercuboid subset of the

admissible velocities Dν � [−ν1m, ν1m] × [−ν2m, ν2m] ×
[−ν3m, ν3m]× [−ν4m, ν4m].

By integrating the velocity-rate limitation (10) within
some time interval (t2 − t1), we obtain the inequality

∫ νis(t2)

νis(t1)

|dνis| ≤
∫ t2

t1

aimdt, ∀(t2 − t1) > 0 (11)

which leads us to the relation

∀t ∈ [t1, t2] |νis(t2)− νis(t1)| ≤ aim(t2 − t1). (12)

From now on, we will be referring to τs(t) � (t2 − t1) as
to the delay time interval, and to

ν̃is(t) � aimτs(t) (13)

as to the instantenous maximal admissible change of
particular commanded velocity. In general the delay time
interval can be varying, but in special case (when we
deal with the discrete-time control implementation), it will
have a constant value equal to the sampling time.

Remark 3. Relation (12) refers to the mean velocity rate
limitation within the delay time interval τs(t). In this
paper, we assume that the interval τs(t) is much shorter
than any dynamical mode of the control plant, so the
velocity change between time instants t2 and t1 could be
well approximated by a constant or linear function. Under
these assumptions, inequality (12) can be treated as an
instantenous velocity rate limitation.

According to the inequality (12), we can define the time-

varying subset Da(t) � [−ν̃1s(t), ν̃1s(t)]×[−ν̃2s(t), ν̃2s(t)]×
[−ν̃3s(t), ν̃3s(t)]× [−ν̃4s(t), ν̃4s(t)] represtenting the admis-
sible region for the commanded velocity change at time t.

3.1 Velocity scaling method I

A preliminary concept limiting the vector of commanded
velocities to the subset Dν , i.e. satisfying (9), was proposed
in 	Lakomy (2017). In this paper, we are extending this idea
by introducing additional scaling factor that will preserve
the velocity-rate limitations introduced in (10).

Let us firstly define a velocity-amplitude scaling factor

sv(t) �

[
max

{
1,

|ν1c|
ν1m

,
|ν2c|
ν2m

,
|ν3c|
ν3m

,
|ν4c|
ν4m

}]−1

∈ (0, 1]

(14)

that scales the commanded velocity vector ν̄c(t), guaran-
teeing preservation of the commanded velocity magnitudes
from (9). The resulting prescaled vector of commanded
velocities is in the form

ν̄∗
c (t) = [ν∗1c(t) ν

∗
2c(t) ν

∗
3c(t) ν

∗
4c(t)]

�

� sv(t)ν̄c(t) ∈ Dν . (15)

To satisfy the velocity-rate limitations introduced in (10),
we need to define a change of the prescaled commanded
velocity vector, i.e.,

∆ν̄∗
c (t) � ν̄∗

c (t)− ν̄s(t− τs) (16)

and scale it with the second scaling factor

sa(t) �

[
max

{
1,
|ν∗1c(t)− ν1s(t− τs)|

ν̃1s
,

|ν∗2c(t)− ν2s(t− τs)|
ν̃2s

,

|ν∗3c(t)− ν3s(t− τs)|
ν̃3s

,

|ν∗4c(t)− ν4s(t− τs)|
ν̃4s

}]−1

∈ (0, 1] (17)

that will bring the scaled commanded velocity change

∆ν̄ννs(t) � sa(t)∆ν̄∗
c (t) = sa(t) [ν̄

∗
c (t)− ν̄s(t− τs)]

= sa(t) [sv(t)ν̄c(t)− ν̄s(t− τs)] (18)

to the admissible subset Da.

According to the scaling heuristics proposed in (15) and
(18), the final form of the scaled velocity vector can be
rewritten as the convex combination:

ν̄s(t) = ν̄s(t− τs) + ∆ν̄s(t)

(18)
= sa(t)sv(t)ν̄c(t) + (1− sa(t))ν̄s(t− τs) ∈ Dν .

(19)

2019 IFAC ACA
August 27-30, 2019. Cranfield, UK

75



76	 Krzysztof Łakomy  et al. / IFAC PapersOnLine 52-12 (2019) 73–78

Trajectory
generator

Kinematic-level
controll

 
 

Vehicle


 

s Dynamic-level
controller

Velocity scaling
block

d, dd,

Fig. 2. Cascaded control structure; the kinematic-level controller is based on the VFO algorithm, while the dynamic-level
controller is designed upon the ADRC methodology.

In Fig. 3 we can see a graphical interpretation of the
proposed method, simplified (due to the presentation
limitation) to the 2D case where two velocities ν3c =
ν4c = 0. The first step of velocity scaling, desribed in
(15), assure us that the prescaled commanded velocity
vector ν̄∗

c lays within the domain Dν . The second step of
scaling procedure, represented by (19), approximates the
prescaled velocity vector to assure that the velocity change
vector ∆ν̄s ∈ Da.

ν 2s

ν 1s
ν 1m

ν 2m

ν c(t)

ν s(t - )

ν s(t)

(t)νc*

Dν

τs

*ν (t)sΔ}

Fig. 3. Graphical interpretation of the velocity scaling
method I.

3.2 Velocity scaling method II

The first step of the second scaling method is exactly
the same as in the first one, i.e., we are obtaining the
prescaled commanded velocity vector as in (15) to set the
commanded velocity directly within Dν . In the case when
the difference

∆ν̄∗
s (t) � ν̄νν∗c(t)− ν̄ννs(t− τs) (20)

lay outside Da (see Fig. 3), we propose to calculate
the scaled velocity vector ν̄s(t) by solving the quadratic
optimization problem

min
∆ν̄νν∗

s(t)

1

2
∆ν̄νν∗�s (t)∆ν̄νν∗s(t), (21)

subject to the constraints satisfying limitations (9), (10):[
1
−1

]
ν̄is(t) ≤

[
ν∗ic(t− τs) + ν̃is(t)
−ν∗ic(t− τs) + ν̃is(t)

]
(22)

for i ∈ {1, ..., 4}.
Remark 4. The cost function presented in (21) formulated
in the proposed way allows us to define the scaling method
as a solution to a convex quadratic optimization problem
that can be solved relatively quickly. The scaling task
could be also achieved using another cost functions, e.g.,
the one minimizing the angle between ν̄s(t) and ν̄∗

c (t)
vectors, but it would make the optimization problem
nonlinear, more complex, and presumably longer to solve.

4. SIMULATION EXAMPLE

In the simulation, we have used a model of the 6 degree-of-
freedom rigid body described in Section 2. The reference
trajectory was defined as follows

ηηηd(t) =

[
ηηηpd(t)
ηηηod(t)

]
=

[
[xd(t) yd(t) zd(t)]

�

[φd(t) θd(t) ψd(t)]
�

]
, (23)

where the desired position vector had the specific form of

ηηηpd(t) =

[
xd(t)
yd(t)
zd(t)

]
=



2 cos π

25 t
4 sin π

25 t
sin 2π

25 t


 . (24)

We assumed that for the torpedo-like system, the reference
velocity along the xB axis should be nominally tangent to
the desired positional trajectory, thus the elements of the
desired orientation vector ηod(t) were computed according
to the formulas

φd(t) = 0, (25)

ψd(t) = atan2(σẏd(t), σżd(t)), (26)

θd(t) = atan

(
−żd(t)

ẋd(t)cψd(t) + ẏd(t)sψd(t)

)
(27)

where σ ∈ {−1, 1} determines the forward/backward
vehicle motion strategy. The error used to the tracking
performance assesment was defined as

eee(t) =

[
eeep(t)
eeeo(t)

]
�

[
ηηηpd(t)− ηηηp(t)
ηηηod(t)− ηηηo(t)

]
. (28)

Results of the simulation conducted with the scaling I
method are presented in Fig. 4. The maximal velocity and
acceleration values were set to νim = 1.0, aim = 1.0 (in the
appropriate SI units) for i ∈ {1, ..., 4}. The utilized VFO-
ADR algorithm guarantees practical stability, implying
convergence of the error vector to some neighbourhood
of zero. Thus, the ultimate non-zero error values visible
on the second plot in Fig. 4 are caused by the controller
limitations and not due to the improper definition of a scal-
ing procedure. To prevent the peaking phenomenon of the
observer implemented in the ADR dynamic controller, we
held the dynamic controller inactive for the first Tstart = 5s
of simulation allowing the observation errors decrease to
acceptably small values.

Due to the almost none visual difference in the plotted
results obtained with both scaling functions, to present a
quantitative comparison between presented methods, we
have computed a control quality criteria

JT1,T2
p =

1

T2 − T1

∫ T2

T1

‖eeep(t)‖dt, and (29)

JT1,T2
o =

1

T2 − T1

∫ T2

T1

‖eeeo(t)‖dt, (30)

together with the control cost
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JT1,T2
τ =

1

T2 − T1

∫ T2

T1

‖τττ(t)‖2dt. (31)

The values of particular functionals for the presented
methods, and for the simple saturation procedure where
νis = νimsat(νic/νim), are presented in Table 1. The
difference between methods I and II is marginal, although
the second method has a slightly smaller mean error
values with slightly greater control cost. The saturation-
based procedure, used in the last case, results in the
smaller mean control error during the transient stage (the
errors converge faster due to the lack of acceleration-level
constraints). However, the error values in the steady state
are similar to the ones obtained with methods I and II. The
greater value of control cost obtained in the simulation
utilizing simple saturation is caused by the large values
of the desired forces and torques in the transient stage
(maximal forces reached ≈ 100N, which corresponds to
approximately 10 times the value obtained with methods I
and II), that may be impossible to generate by the physical
actuators.

Table 1. Values of the performance indexes

- J5,50
p J5,50

o J30,50
p J30,50

o J5,50
τ

Method I 2.1585 0.2221 0.0002 0.0002 112.2583
Method II 2.1201 0.2192 0.0002 0.0002 116.6499
Saturation 1.6702 0.1043 0.0002 0.0002 171.7289

In Table 2, we can see the average simulation time tavg
and the standard deviation σs of a single scaling function
call compared for the two scaling methods. The results
were calculated by running the scaling functions 10 000
times using the previously prepared data samples. The
values were obtained on the PC equipped with i7-4720HQ
CPU @ 2.60GHz processor and 8 GB DDR3 RAM, while
the optimization was done with the quadprog Matlab
function. Execution speed of the method I significantly
exceeds the speed obtained for method II, although the
ratio of the average execution times calculated for both
methods could probably be reduced by utilizing more
efficient optimization tool.

Table 2. Mean values and standard deviations
of scaling function calculation time

- tavg [s] σs [s]

Method I 0.0003 0.0002
Method II 0.0052 0.0024

5. EXPERIMENTAL VERIFICATION

The experimental study was conducted on the laboratory
station equipped with an underactuated autonomous air-
ship, unable to generate force along yB axis. The block
diagram of utilized setup is presented in Fig. 5. The refer-
ence positional trajectory was defined by

ηηηpd(t) �

[
0.8 + 0.1t

0.15tanh(0.15t− 3)− 0.15tanh(−3)
0.5− 0.05sin( π

40 t−
π
2 ) + 0.05sin(−π

2 )

]
, (32)

while the desired angles were calculated according to (25)-
(27). The values of velocity-amplitude and velocity-rate
limitations were set to ν1m = 0.25 m/s, a1m = 0.1 m/s2,
νim = 0.2 rad/s and aim = 0.4 rad/s2 for i ∈ {2, 3, 4}.
Results of the experiment presented in Fig. 6 were ob-
tained using the velocity scaling method I. During the
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Fig. 4. Simulation results for the scaling method I

initial maneuvers, the airship is approaching the desired
trajectory and converging to the vicinity of the desired
position in a linear manner (see the position and orienta-
tion error plot). At the beginning of movement, the air-
ship is accelerating satisfying the velocity-rate limitation
(10), what results in a visible ramp at the commanded
velocity plot (see the constant value of u̇c = a1m and the
constant offset in the τu). After the airship have reached
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JT1,T2
τ =

1

T2 − T1

∫ T2

T1

‖τττ(t)‖2dt. (31)

The values of particular functionals for the presented
methods, and for the simple saturation procedure where
νis = νimsat(νic/νim), are presented in Table 1. The
difference between methods I and II is marginal, although
the second method has a slightly smaller mean error
values with slightly greater control cost. The saturation-
based procedure, used in the last case, results in the
smaller mean control error during the transient stage (the
errors converge faster due to the lack of acceleration-level
constraints). However, the error values in the steady state
are similar to the ones obtained with methods I and II. The
greater value of control cost obtained in the simulation
utilizing simple saturation is caused by the large values
of the desired forces and torques in the transient stage
(maximal forces reached ≈ 100N, which corresponds to
approximately 10 times the value obtained with methods I
and II), that may be impossible to generate by the physical
actuators.

Table 1. Values of the performance indexes

- J5,50
p J5,50

o J30,50
p J30,50

o J5,50
τ

Method I 2.1585 0.2221 0.0002 0.0002 112.2583
Method II 2.1201 0.2192 0.0002 0.0002 116.6499
Saturation 1.6702 0.1043 0.0002 0.0002 171.7289

In Table 2, we can see the average simulation time tavg
and the standard deviation σs of a single scaling function
call compared for the two scaling methods. The results
were calculated by running the scaling functions 10 000
times using the previously prepared data samples. The
values were obtained on the PC equipped with i7-4720HQ
CPU @ 2.60GHz processor and 8 GB DDR3 RAM, while
the optimization was done with the quadprog Matlab
function. Execution speed of the method I significantly
exceeds the speed obtained for method II, although the
ratio of the average execution times calculated for both
methods could probably be reduced by utilizing more
efficient optimization tool.

Table 2. Mean values and standard deviations
of scaling function calculation time

- tavg [s] σs [s]

Method I 0.0003 0.0002
Method II 0.0052 0.0024

5. EXPERIMENTAL VERIFICATION

The experimental study was conducted on the laboratory
station equipped with an underactuated autonomous air-
ship, unable to generate force along yB axis. The block
diagram of utilized setup is presented in Fig. 5. The refer-
ence positional trajectory was defined by

ηηηpd(t) �

[
0.8 + 0.1t

0.15tanh(0.15t− 3)− 0.15tanh(−3)
0.5− 0.05sin( π

40 t−
π
2 ) + 0.05sin(−π

2 )

]
, (32)

while the desired angles were calculated according to (25)-
(27). The values of velocity-amplitude and velocity-rate
limitations were set to ν1m = 0.25 m/s, a1m = 0.1 m/s2,
νim = 0.2 rad/s and aim = 0.4 rad/s2 for i ∈ {2, 3, 4}.
Results of the experiment presented in Fig. 6 were ob-
tained using the velocity scaling method I. During the
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Fig. 4. Simulation results for the scaling method I

initial maneuvers, the airship is approaching the desired
trajectory and converging to the vicinity of the desired
position in a linear manner (see the position and orienta-
tion error plot). At the beginning of movement, the air-
ship is accelerating satisfying the velocity-rate limitation
(10), what results in a visible ramp at the commanded
velocity plot (see the constant value of u̇c = a1m and the
constant offset in the τu). After the airship have reached
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Fig. 5. Functional block diagram of the experimental
setup.

uc = ν1m, it keeps the maximal longitudinal commanded
velocity until it approaches the close neighbourhood of the
desired trajectory. The VFO-ADR algorithm is fragile to
the measurement noise due to a high-gain observer used
in the ADR part, so the amplified high-frequency noise in
the commanded velocity rates was expected. The positive
influence of the scaling procedure in this case is that the
values of calculated velocity rates were bounded to the
values aim, what resulted in the partial reduction of noise
level in commanded velocities and control signals.

It is worth noting, that the control performance of the
high-gain observer based control algorithms (including the
inner-loop ADR controller) highly depends on the control-
loop frequency. Obtained control-loop frequencies f and
standard deviations of control-loop sampling time σs are
presented in the Table 3. Utilizing the method I, the
control-loop frequency is almost twice as large as the one
obtained with method II, so we can conclude that method
I is of better use for the VFO-ADR algorithm.

Table 3. Average control-loop frequency and
standard deviation of its sampling time

- f [Hz] σs [s]

Method I 164.52 0.0003
Method II 84.57 0.0023
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