
Posture stabilization of a 3-link nonholonomic manipulator – two
control approaches∗

Krzysztof Kozłowski, Maciej Michałek, Dariusz Pazderski

Chair of Control and Systems Engineering, Poznań University of Technology, Piotrowo 3a, 60-965
Poznań

email: name.surname@.put.poznan.pl

Abstract The paper presents two different con-

trol approaches, which allow to solve difficult

posture stabilization task for a 3−link nonholo-

nomic planar manipulator. Difficulties arise from

nonintegrable motion constraints imposed on a

system evolution and less number of control in-

puts in comparison to a state dimension. Pre-

sented solutions belong to one of two general sta-

bilization approaches: time-varying or discontin-

uous one. Control performances of both stabiliza-

tion strategies have been illustrated by simulation

results.

1. Introduction. The underactuated mechani-

cal systems with nonintegrable motion con-

straints (nonholonomic contraints) play a very

important role in many practical applications.

Over two last decades in a robotics literature

much work has been devoted to restricted mo-

bility wheeled robots with nonholonomic con-

straints. Recently, some authors have considered

other examples of underactuated robotic system,

namely so-called nonholonomic manipulator. It

can be regarded as a very interesting solution

combining good manipulability properties and

lightness of the construction, since number of

motors is considerably less than number of inde-

pendent active joints. However, because of some

technical difficulties, not many constructions of

nonholonomic manipulators were built so far.

One well-known example of such system, which

was constructed and experimentally tested uses

nonholonomic ball-gears [13, 11]. These gears,

mounted in each manipulator joint, play a cru-

cial role in input velocities transmission along the

whole kinematic chain. Apart from difficulties in

realizing nonholonomic manipulators, very im-

portant and challenging is a control problem of

such devices. Since nonholonomic manipulator is

subjected to nonintegrable constraints, its kine-

matics can be modeled as an underactuated non-

linear driftless affine system, for which sufficient

Brockett’s conditions for smooth stabilizability

are not met [3]. As a consequence, no contin-

uously differentiable, statically state dependent

control law can be used for posture (point) sta-

bilization. Many different strategies to solve the

difficult stabilization task were proposed – com-

pare for example [10, 7]. Among them, two major

classes of control schemes may be distinguished:

time-varying strategies and time-invariant non-

continuous techniques.

In this paper two different approaches of pos-

ture stabilization of 3-link nonholonomic ma-

nipulator with ball-gears [13, 11] will be pre-

sented. The first controller, which may be clas-

sified as Time-Varying Oscillatory-based (TVO)

stabilizer, is based on a new idea of stabilization

initially proposed by Dixon et al. [4], and next

significantly extended by Morin et al. [9]. The

time-differentiable control law developed here

ensures practical stabilization in the sense, that

a regulation error is decreased to the assumed

neighborhood of a reference point.

The second considered controller comes from

the Vector Field Orientation (VFO) approach in-

troduced for the first time in [5]. The VFO ap-

proach results from a simple geometrical inter-

pretation of a controlled kinematic structure and

its possible time evolution in a response to spe-

cific inputs. The VFO methodology for a non-



Figure 1. The nonholonomic ball-gear.

holonomic manipulator will be described, and a

VFO (C0 continuous, time-invariant) stabilizer

ensuring asymptotic stability will be derived.

The paper is organized as follows. In Section

2 model description of a nonholonomic manipu-

lator equipped with ball-gears is presented. Sec-

tion 3 is devoted to derivation of two alternative

control laws used later for posture stabilization.

In the Section 4 simulation results are presented.

Concluding remarks are given in Section 5.

2. Kinematics. Nonholonomic manipulator

constitutes a very interesting proposition of

a new mechanical solution, where N−link

chain can be driven by only two input signals

preserving full controllability of a system in a

whole configuration space [13, 11]. The main

idea of this solution lies in velocity transmission

along manipulator arm, in which nonholonomic

ball-gears have been designed and located at par-

ticular joints (see Fig.1). Each ball-gear consists

of a ball and three wheels rolling on it without

slippage. Inputs of the ball-gear are input-wheel

(IW ) velocity, ρ, and the angular velocity, θ̇,

which orients the input-wheel in relation to

the ball and two perpendicular output-wheels

(OW1, OW2). Driving the input-wheel and

changing its orientation with respect to output-

wheels, one can divide an input-wheel velocity

onto two angular velocities of output-wheels as

follows:

ω1 = ρ
rI
rO
cos θ, (1)

ω2 = ρ
rI
rO
sin θ, (2)

Figure 2. The nonholonomic planar manipulator with three

links and two control inputs.

where rI
rO

describes the ball-gear ratio. Although

such a mechanical solution presents many prac-

tical benefits, stabilization control task for this

system becomes quite difficult due to the Brock-

ett’s conditions [3]. Assuming unit ratios of all

existing gears, the kinematic model of the 3-link

nonholonomic manipulator with particular joint

velocity transmission depicted in Fig. 2 can be

described as follows:





θ̇1
θ̇2
θ̇3



 =





1

0

0



u1 +





0

sin θ1
cos θ1 cos θ2



u2,

(3)

where q
∆
= [q1 q2 q3]

T ∆= [θ1 θ2 θ3]
T ∈ Q ⊂ R

3

is a state vector (configuration angles of a kine-

matic chain), u1, u2 ∈ U ⊂ R are input signals.

Model (3) belongs to a class of nonholonomic

driftless systems described in the following gen-

eral form:

q̇ = g1u1 + g2(q)u2, (4)

where g1, g2(q) are basic vector fields – genera-

tors. Nonintegrable velocity constraints obtained

directly from equation (3) can be written in Pfaf-

fian form:

A(q)q̇ =





0

− cos θ2 cos θ1
sin θ1





T 



θ̇1
θ̇2
θ̇3



 = 0, (5)

where A(q) is the constraint matrix. Constraint

(5) results from the rolling without slippage as-

sumption in the nonholonomic ball-gear. System

(3) is fully controllable in a whole configuration



space Q ⊂ R
3, however not all generalized ve-

locities q̇ are accessible during its time evolution

due to imposed constraints (5). This fact causes,

that control tasks become a challenge for control

researchers.

The form of the second generator g2(q) in (3)

implies, that for some set of configuration points

Qs ⊂ Q:

Qs =
{

q : θ1 = nπ ∧ θ2 = (2n− 1)
π

2

}

n=0,±1...
(6)

the vector field g2(q) degenerates to zero. This

effect can cause difficulties during stabilization

process considered here. Hence, the set of non-

regular points Qs in the configuration space Q
should be avoided during a control process. For

our purposes we exclude some points from the

configuration domain and postulate the following

assumption:

∀τ>0 θ2(τ) ∈
(

−π
2
,
π

2

)

, (7)

which guarantees avoiding points from the setQs
(see (6)).

3. Posture stabilization. In this paper posture

stabilization task for the 3-link nonholonomic

manipulator will be considered. In order to deter-

mine posture error the following vector e ∈ R
3

is defined

e
∆
=





e1
e2
e3





∆
= qt − q =





θ1t − θ1
θ2t − θ2
θ3t − θ3



 , (8)

where qt and q determine the reference and ac-

tual configuration, respectively. Without lack of

generality we assume that the reference point to

be stabilized is the origin: qt
∆
= [0 0 0]T . In the

sequel of this paper two control approaches will

be described, which allow to solve practical and

asymptotic stabilization task for nonholonomic

kinematics (3). The practical stabilization task is

defined as follows.

Definition 1 Find bounded controls u1, u2 for

kinematics (3) such, that Euclidean norm of the

stabilization error (8) tends to some neighbor-

hood of zero in the sense, that lim
τ→∞
‖e‖ = ε,

where constant ε > 0 can be made arbitrary

small.

For asymptotic stabilization task it is sufficient to

assume in Definition 1 that ε = 0. Therefore, the

asymptotic stabilization can be seen as a partic-

ular case of practical stabilization.

3.1. Practical stabilization. The first control

method (TVO) considered here is based on tuned

oscillator idea introduced by W. Dixon and others

[4]. It should be noted that this approach can be

seen as an particular case of more general theory

developed by P. Morin and C. Samson [9] taking

advantage of so-called transverse functions. The

main feature concerning this control scheme lies

in virtual periodic signals tracked by state vector

of the system.

Model transformation. In this section we

present a control law taking advantage of mathe-

matical properties of the system known as Brock-

ett’s nonholonomic integrator [3]. This is the

driftless nilpotent system for which controllabil-

ity in a short time is ensured by the first order

Lie bracket. The nonholonomic integrator can be

written in the following form (compare [4])

ẋ∗ = v,

ẋ3 = x∗TJv,
(9)

where x =
[

x1 x2 x3
]T
=
[

x∗T x3
]T ∈

R
3 is a state vector, v =

[

v1 v2
]T ∈ R

2 de-

notes an input and J =

[

0 −1
1 0

]

is the skew-

symmetric matrix.

In order to transform kinematic equation (3) to

the form of nonholonomic integrator the follow-

ing nonlinear transformation can be considered

(see also [13])

x
∆
= p (q)

∆
=





q3
tan q1
cos q2

2q2 − q3 tan q1cos q2



 . (10)

The inverse transformation can be obtained as

follows

q
∆
= p−1 (x) =





arctan
(

x2 cos
1
2 (x1x2 + x3)

)

1
2 (x1x2 + x3)

x1



 .

(11)



One can observe that (10) determines a local dif-

feomorfism which is well defined if

θ1, θ2 ∈
(

−nπ
2
, n

π

2

)

n=1,2,...
. (12)

However, for practical reasons our considerations

are limited to the case for which n = 1, namely

it is assumed that (7) holds and

∀τ>0 θ1,∈
(

−π
2
,
π

2

)

. (13)

According to (10) it is clear that proposed

transformation is strictly nonlinear what can be

illustrated geometrically – see Fig. 3. In upper

part of this figure quarter of sphere in original

joint space (in θ1, θ2, θ3 coordinates) is depicted.

Next, the result of mapping of the part of sphere

using (10) is presented in its lower part. As one

can see the original space is nonlinearly rescaled

(compare maximum values of x1, x2 and x3). Es-

pecially it is observed if angles θ1 and θ2 are near

singular points (i.e. when they approach ±π/2).
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Figure 3. Above: a quarter of the sphere depicted in the

joint space (radius of the sphere equals to π/2.5), below: the

mapped quarter of the sphere in auxiliary coordinates

Next, we will make some comments taking

into account inverse transformation (11). Accord-

ing to it one can see that for bounded signals

x1, x2 and x3 ∈ L∞ coordinate θ1 is always in

the assumed range, i.e. θ1 ∈ (−π/2, π/2). Proper

behavior of θ3 can be relatively easy ensured

since θ3 = x1. The main problem is related to

the coordinate θ2 which should satisfy assump-

tion given by (13). However, from (11) it is clear

that the inverse transformation cannot guarantee

it. Therefore, it is very important to tune the con-

troller in such a way to overcome this obstruction

or to switch control strategy if |x1x2 + x3| > π.

Apart from coordinate transformation a rela-

tion between original, u, and auxiliary, v, con-

trol signals must be developed. Taking the time

derivative of x∗ and using (10) one can obtain

that

v = T (q)u, (14)

where T (q) ∈ R
2×2 is the control transforma-

tion matrix defined as

T (q)
∆
=

[

0 cos q1 cos q2
1

cos2 q1 cos q2

sin q1
cos q2
tan q1 tan q2

]

(15)

with θ1 and θ2 satisfying assumptions (7) and

(13). Since T (q) is invertible as long as (7) and

(13) is satisfied, one can obtain that

u = T (q)
−1

v. (16)

Summarizing, as a result of transformations (10)

and (16) it is possible to resolve posture stabi-

lization for the considered nonholonomic manip-

ulator by developing the control law which sta-

bilizes the system given by (9). This approach is

presented in the next subsection.

TVO control law. Firstly, for control purpose

considered here and taking into account the sys-

tem (9) the following signal z ∈ R
3 may be in-

troduced

z
∆
=

[

z∗

z3

]

= x−
[

xd
−xTd Jx∗

]

, (17)

where z∗ = [z1 z2]
T ∈ R

2, xd = [xd1 xd2]
T ∈

R
2 denotes auxiliary time-varying bounded sig-

nals which will be defined later.

It should be noted that definition (17) illus-

trates the main concept of TVO stabilizer as well

as other controllers using transverse functions.

It consists of decreasing regulation error x indi-

rectly by tracking additional virtual signals xd.

Moreover, relation (17) has its roots in differen-

tial geometry, since it takes advantage of a left-

invariant group operation for system (9) (com-

pare [9, 8]).



The auxiliary task of control consists of

asymptotic (exponential) stabilization of ‖z‖,
namely

‖z‖ 6 γ ‖z (0)‖ exp (−βτ) , (18)

where τ > 0 denotes time and γ, β > 0 are

positive constants.

According to assumption (18) and definition

(17) one can conclude that

lim
τ→∞

z∗ = 0⇒ lim
τ→∞

x∗ = xd (19)

and

lim
τ→∞

z3 = 0⇒ lim
τ→∞

x3 = 0, (20)

where x∗ = [x1 x2]
T

. These relations show that

accuracy of regulation in the steady state is deter-

mined by signal xd. Moreover, xd significantly

influences the transient states behavior during

regulation process since it is tracked by x∗ ac-

cording to (19).

In order to develop the control law which

makes z = 0 to be asymptotically stable equi-

librium point the following Lyapunov candidate

function is proposed

V =
1

2
zTz. (21)

Next, taking its one can get

V̇ = zT ż = z∗T ż∗ + z3ż3. (22)

Calculating the time derivative of z∗ from (17)

results in

ż∗ = v − ẋd. (23)

It should be noted that regulation task concerning

vector z∗ is relatively easy and can be resolved

proposing the following control signal

v = −k1z∗ + ẋd, (24)

where k1 > 0 is a controller parameter. Using

(24) and (17) in (22) yields in

V̇ = −k1z∗Tz∗ + z3ż3. (25)

Next, the term ż3 can be calculated according to

(17) as follows

ż3 = xTd Jẋd + 2k1x
∗TJxd. (26)

Here signal ẋd can be interpreted as an additional

control signal and can be used for asymptotic sta-

bilization of coordinate z3. In order to calculate

ẋd we assume that xd is originated by tunable

oscillator [4] according to the following equation

xd = Ψξ, (27)

where Ψ =

[

ψ1 0

0 ψ2

]

is a gain matrix with

scalar functions ψ1 (τ) and ψ2 (τ) > 0 which

may be changed during regulation process and ξ

is a solution of the following differential equation

ξ̇ = uωJξ (28)

with uω determining an instantaneous frequency

of ξ and initial condition

ξ (0)
T

ξ (0) = 1. (29)

As one can see (28) describes an undumped lin-

ear oscillator with constant amplitude of signal

ξ, such that ∀τ>0 ξT (τ) ξ (τ) = 1. Similarly to

the control law given by P. Morin and C. Sam-

son [9] frequency uω can be regarded as the third

control signal (apart from v1 and v2) that makes

the system to be virtually fully actuated.

An analytical formula describing uω can

be obtained using the time derivative of (27),

namely

ẋd = Ψ̇ξ +Ψξ̇ (30)

and relations (26) and (24). A a result the fol-

lowing relation can be written

ż3 = ξTΨ
TJΨ̇ξ + 2k1x

∗TJxd − ψ1ψ2uω.
(31)

Then it is straightforward to show that applying

uω written as

uω =
−w + ξTΨ

TJΨ̇ξ + 2k1x
∗TJxd

ψ1ψ2
. (32)

in (31) leads to decoupled subsystem, namely

ż3 = w, where w is a scalar function which is a

new input. In order to ensure exponential stabi-

lization of z3 we propose to set

w = −k2z3, (33)



where k2 > 0 is a constant controller parameter.

Consequently, taking into account (33) allows to

rewrite the time derivative of V as

∀τ>0,‖z‖6=0 V̇ = −k1z∗Tz∗ − k2z23 < 0. (34)

Then, assuming that β = min {k1, k2} the fol-

lowing upper bound of V̇ can be written

V̇ 6 −βzTz = −2βV. (35)

As a consequence one can prove that V tends

to zero exponentially, namely

∀τ>0 V (τ) = V (0) exp (−2βτ) . (36)

Proposition 1 Assuming that k1, k2, ψ1 and

ψ2 > 0 and ψ1, ψ2, ψ̇1 and ψ̇2 ∈ L∞, the con-

troller given by (24), (32), (33), (27), (28) and

(29) stabilizes the system (17) exponentially in

the sense given by (18).

Considering (32) one can see that frequency

of oscillation uω is strictly related to functions ψ1
and ψ2 determining amplitude of auxiliary signal

xd. In the case when ‖z‖ is high with respect to

ψ1 and ψ2 high frequency of oscillation will ap-

pear. Hence, choosing ψ1 and ψ2 properly is very

important since it may improve transient behav-

ior of the controlled system. On the other hand

xd determines an accuracy of regulation in the

steady-state, according to relation (19). Therefore

it is reasonable to assume that at the beginning

of regulation process values of ψ1 and ψ2 should

be chosen high enough so they tend to small val-

ues as time goes to infinity. Similarly to [4] the

following proposition regarding ψ1 and ψ2 may

be assumed

ψi (τ) = ψi0 exp (−αiτ) + εi, for i = 1, 2,
(37)

where ψi0 > 0, αi > 0 and εi > 0 are scalar

coefficients determining initial and limit value of

functions ψi and their convergence rate, respec-

tively.

Then using the scaling functions given by (37)

one can prove according to (19) and (20) that

lim
τ→∞







|x1| 6 ε1
|x2| 6 ε2
x3 = 0.

(38)

Finally, we return to the stabilization problem

of nonholonomic manipulator in joint space. Ac-

cording to errors given by (8) and transformation

(11) one can conclude that lim
τ→∞

x = 0 implies

lim
τ→∞

e = 0. As a result the following proposition

can be formulated.

Proposition 2 Assuming that q satisfy assump-

tion (13) the controller given by (24), (32), (27),

(28), (29) and (37) with transformations (10) and

(16) ensures boundnesses of the errors e in the

sense given by

lim
τ→∞







|e1| 6 ε2
|e2| 6 1

2ε1ε2
|e3| 6 ε1

. (39)

Remark 1 Exponential convergence of an auxil-

iary error z (see (18)) implies exponential con-

vergence transformed state vector to the set of

desired point with size determined by εi. Conse-

quently, considering inverse transformation p−1

(11) one can make the similar conclusion with re-

spect to error e convergence. Moreover, the con-

vergence rate can be determined easily, since it is

directly related to the selection of k1, k2 as well

as αi parameter (compare (36) and (37)).

Remark 2 Based on Lyapunov stability analysis

it can be observed that the control law given by

(24) and (32) may be simplified. According to

the simulation results it was observed that the

better transient behavior of the system (i.e. less

oscillatory) is possible if the time derivatives of

ψ1 and ψ2 are neglected. Assuming that gains k1
and k2 are chosen to be high enough in respect

to ψ̇1 and ψ̇2 the modified control law written as

v = −k1z +Ψξ̇,

uω =
k2z3+2k1x

∗TJxd
ψ1ψ2

(40)

makes the point z = 0 to be asymptotically sta-

ble.

3.2. Asymptotic stabilization. In the next sec-

tion the Vector Field Orientation (VFO) method,

which allows to solve the posture stabilization

task, will be described. The VFO strategy has

been introduced for the first time in [5].



VFO approach. The VFO concept directly

comes from a simple and intuitive geometrical

interpretation of the structure of controlled kine-

matics (3) and its possible time evolution in a re-

sponse to specific controls u1 and u2. The main

idea involves decomposition of eq. (3) into two

subsystems:

θ̇1 = u1, (41)
[

θ̇2
θ̇3

]

=

[

sin θ1
cos θ1 cos θ2

]

u2
∆
= g∗2(q)u2. (42)

The first 1-D subsystem is linear, the second one

(2-D) is nonlinear. One can notice, that the direc-

tion of time evolution of state variables θ2 and

θ3 in R
2 depends on the direction of the vector

field g∗2(q):

Dir{q̇∗} = Dir{g∗2(q)}, (43)

where q̇∗
∆
= [θ̇2 θ̇3]

T and Dir{z} denotes the

direction of z in space R
N (here in R

2). Since

both components of g∗2(q) depend on the first

state variable θ1, the current direction of g∗2(q)
can be changed by changing the actual value of

θ1. From (41) it results, that this change can be

accomplished relatively easy with the first input

signal u1. All accessible orientations (and direc-

tions) of g∗2(q) in R
2 as a function of variable

θ1 have been depicted in Fig. 4, where variable

θ2 has been assumed to be fixed and equal to

π/4. Since θ1 directly affects the orientation1 of

g∗2(q), it can be called the orienting variable.

Next, because input u1 directly drives the ori-

enting variable θ1, it can be called the orienting

control. It is easy to find, that the second input u2

drives the sub-state q∗
∆
= [θ2 θ3]

T along a current

direction of g∗2(q). One can say, that u2 pushes

the sub-state q∗ along this vector field. Hence

u2 will be called the pushing control. Aforemen-

tioned interpretation and terminology allows to

describe the VFO control methodology for sys-

tem described by eqs. (41) and (42). In order to

do that, we have to introduce some additional

vector field h(τ)
∆
= [h1(τ) h2(τ) h3(τ)]

T which

1Strictly speaking, the orientation of some vector field z

means its direction in R
N along with its sense.

will be called the convergence vector. Next we

assume, that this vector determines an instanta-

neous convergence direction (orientation), which

should be followed by controlled system to reach

the reference goal point qt. At the moment we

assume, that h is given. Now the VFO control

strategy can be explained as follows. Since h de-
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Figure 4. Accessible orientations (and directions) of vec-

tor field g∗
2
(q) (see (42)) in R

2 as a function of orienting

variable θ1 and for fixed θ2 = π/4 (plot with discretization

∆θ1 = 2π/100[rad]).

fines the convergence direction, it is desirable to

put the direction of generalized velocity vector

field q̇ of the controlled system (3) onto direc-

tion of h with the first input u1. Simultaneously

the subsystem (42) should be pushed along the

currently oriented vector field q̇ with the second

input u2. Moreover, it seems to be reasonable to

push the subsystem (42) only proportionally to a

current orthogonal projection of h∗
∆
= [h2 h3]

T

onto the instantaneous direction of g∗2(q) (or q̇∗

due to (43)). As far as a convergence of θ1 vari-

able is concerned, the whole vector field h should

be designed such as it ensures tending of θ1 to

its reference value at the limit as θ2 and θ3 reach

their reference values. Mathematically, the VFO

strategy can be written in the following form:

find u1 :
{

lim
τ→∞
(q̇ ‖h)⇔ lim

τ→∞
(q̇ k = h)

}

,

find u2 : { ‖ q̇∗‖ ∝ ‖h∗‖ cosα} ,

where k = k() 6= 0 is a scalar function and

α∠(g∗2(q),h
∗). According to described strategy,

conditions which assure matching directions of

two vector fields h and q̇ will be derived. The



first of the above relations can be rewritten as

follows:

u1 : lim
τ→∞











θ̇1
θ̇2
θ̇3



 k =





h1
h2
h3











(3)⇒

(3)⇒ lim
τ→∞











u1 k

sin θ1u2 k

cos θ1 cos θ2u2 k



 =





h1
h2
h3











.

Combining the last two relations one can obtain

two so called VFO orienting conditions:

find u1 : lim
τ→∞

{

u1 k() = h1
tan θ1 =

k()h2 cos θ2
k()h3

}

. (44)

These conditions should be met to ensure putting

direction of q̇ onto direction of h and will be di-

rectly used in the next section for design purposes

of the first control signal u1. Function k(), which

appears in these conditions is not needed to be

known explicitly2, but its sign will be helpful to

properly shape the transient states of the whole

control system. Let us assume, that the following

equality holds: sgn(k()) = sgn(e30), where e30
denotes the initial value of the stabilization error

e3 = θ3t − θ3.
VFO control law. The first relation in (44) can

be fulfilled instantaneously by proper definition

of signal u1. But the second one can be generally

met only at the limit as τ → ∞. Hence, let us

introduce the auxiliary direction variable:

θ1d
∆
= Atan2 (sgn(e30)h2 cos θ2, sgn(e30)h3)

(45)

and the auxiliary error:

e1d
∆
= θ1d − θ1, (46)

where Atan2 (., .) denotes the four-quadrant in-

verse tangent function and:

sgn(z)
∆
=

{

1 , for z > 0,

−1 , for z < 0.
(47)

Now, to fulfill the second condition in (44) it

suffices to guarantee, that the error e1d tends to

2As it will be shown, function k() does nowhere appear

in final definitions of control signals.

zero. Therefore, we propose to define the first

component of the convergence vector as follows:

h1
∆
= k()[k1e1d + θ̇1d], (48)

where k1 > 0 is a design coefficient and feedfor-

ward term can be computed as follows

θ̇1d
(45)
=
(ḣ2h3 − h2ḣ3) cos θ2 − h2h3θ̇2 sin θ2

h23 + h
2
2 cos

2 θ2
.

(49)

Finally, to meet the first relation in (44), it suffices

to take:

u1
∆
=

h1
k()

(48)
= k1e1d + θ̇1d. (50)

The control law given by (50) guarantees, that:

limτ→∞ e1d = 0 (it will be proved in the sequel).

Now, the last two components h2 and h3 of

a convergence vector h will be defined. Let us

introduce the following proposition:

h∗ =

[

h2
h3

]

∆
= kpe

∗ + q̇∗vt, e∗
∆
=

[

e2
e3

]

,

(51)

where kp > 0 is a design coefficient. The last

term q̇∗vt is defined as

q̇∗vt
∆
= −η ‖e∗‖ sgn(e30)g

∗
2t, 0 < η < kp

(52)

and is called the virtual reference velocity, where:

g∗2t = g∗2(qt)
(3)
=

[

sin θ1t
cos θ1t cos θ2t

]

=

[

0

1

]

.

(53)

Coefficient η allows to shape the transient states.

According to VFO strategy it remains to define

the pushing control u2. Following considerations

conducted in this subsection, we propose to take:

u2
∆
=
1

‖ g∗2‖
‖h∗‖ cosα, ‖ g∗2‖ 6= 0 (54)

where α∠(g∗2 ,h) and (for ‖ g∗2‖ , ‖h∗‖ 6= 0):

cosα
∆
=

g∗T2 h∗

‖ g∗2‖ ‖h∗‖
. (55)

Substituting (55) into (54) yields the simpler

form of definition of signal u2:

u2 =
g∗T2 h∗

‖ g∗2‖
2 =

h2 sin θ1 + h3 cos θ1 cos θ2

sin2 θ1 + cos2 θ1 cos2 θ2
.

(56)



Recalling assumption (7) it results, that

∀τ>0 ‖ g∗2‖ 6= 0 and formulas (54) or (56) are

always well defined. Now we can formulate the

following proposition.

Proposition 3 Assuming (7) and conditions:

e∗(0) 6= 0, ∀τ<∞ ‖h∗‖ 6= 0, the VFO con-

troller given by (50) and (56) stabilizes the ref-

erence point qt = [0 0 0]
T in a sense, that

limτ→∞ {q(τ)→ qt}.
Proof: First, we consider behavior of the aux-

iliary error e1d. Substituting (50) into (3) yields

the following error equation:

ė1d + k1e1d = 0 ⇒ lim
τ→∞

e1d = 0. (57)

Hence, the auxiliary error, e1d, exponentially

converges to zero as τ →∞. Now we will show

the convergence of the error e∗. For posture sta-

bilization task one can write:

e∗
∆
= q∗t − q∗ ⇒ ė∗ = −q̇∗. (58)

Using (51) one can rewrite the above right hand

side equation as follows:

ė∗ = −q̇∗ + h∗ − kpe∗ − q̇∗vt,

which can be ordered as follows:

ė∗ + kpe
∗ = r − q̇∗vt, r = h∗ − q̇∗. (59)

Making simple calculations one may derive the

following useful relations:

‖ r‖2 = ‖h∗‖2 (1− cos2 α), (60)

where cosα is defined by (55) and

lim
θ1→θ1d

(1− cos2 α) = 0. (61)

Now we propose to choose the following positive

definite Lyapunov function:

V (e∗)
∆
=
1

2
e∗Te∗ . (62)

The time derivative of the above function can

be estimated as follows (to simplify the no-

tation, we use γ =
√
1− cos2 α and δ =

−η ‖ e∗‖ sgn(e30)):

V̇ = e∗T ė∗
(59)
= e∗T (−kpe∗ + r − q̇∗vt) =

(52)
= e∗T (−kpe∗ + r − δ g∗2t) =

= −kp ‖ e∗‖2 + e∗Tr − δe∗Tg∗2t 6

6 −kp ‖ e∗‖2 + ‖ e∗‖ ‖ r‖+ |δ| ‖ e∗‖ ‖ g∗2t‖ =
(53)
= −kp ‖ e∗‖2 + ‖ e∗‖ ‖ r‖+ |δ| ‖ e∗‖ =
(60)
= −kp ‖ e∗‖2 + ‖ e∗‖ ‖h∗‖ γ + |δ| ‖ e∗‖ =
(51)
= −kp ‖ e∗‖2 + ‖ e∗‖ [ ‖ kpe∗ + q̇∗vt‖ γ + |δ| ] 6
6 −kp ‖ e∗‖2 + ‖ e∗‖ [ (kp ‖ e∗‖+ |δ|)γ + |δ| ] =
= −kp(1− γ) ‖ e∗‖2 + |δ| (1 + γ) ‖ e∗‖ =
= −[kp − kpγ − η − ηγ] ‖ e∗‖2 .

The above time derivative is negative-definite, if

the term in brackets is positive. It gives the fol-

lowing convergence condition:

γ < (kp − η)/(kp + η) ⇒ lim
τ→∞
‖ e∗‖ → 0.

(63)

Since 0 < η < kp and relations (61) and (57)

hold, one concludes:

∃τγ>0 : ∀τ>τγ γ < (kp − η)/(kp + η) (64)

and the norm ‖ e∗‖ tends asymptotically (expo-

nentially for τ > τγ) to zero as τ →∞.

Now, it remains to prove convergence of er-

ror e1. Due to (57), it suffices to show, that

limτ→∞ θ1d → 0. According to definition (45),

we have to show, that h2 component always tends

to zero faster than h3. Recalling (51), (52) we

have:

h2 = kpe2,

h3 = kpe3 − η ‖ e∗‖ sgn(e30),
(65)

Moreover, it is easy to show that:

lim
θ1→θ1d

{

θ̇2 = h2,

θ̇3 = h3.

(58)⇒ lim
θ1→θ1d

{

ė2 = −h2,
ė3 = −h3.

(66)

Substituting (65) into (66) yields:

lim
θ1→θ1d

{

ė2 + kpe2 = 0,

ė3 + kpe3 = η ‖ e∗‖ sgn(e30).

It is clear, that e2 tends to zero faster, than e3.

Taking into account (65) it is also clear, that at



the limit ‖ e∗‖ → 0, component h2 → 0 always

faster than h3. Hence we have shown, that:

lim
‖ e∗‖→0

(θ1d → 0)
(57)⇒ lim

‖ e∗‖→0
(θ1 → 0).

Since h2, h3 and θ1 ∈ L∞ and if ∀τ<∞ ‖h∗‖ 6=
0 the feedforward term θ̇1d ∈ L∞ and recalling

(7) one concludes that control signals (50) and

(56) are bounded.

�

Remark 3 Definition (45) is not determined,

when the controlled system is at the reference

point q∗t , what means e2 = e3 = 0 ⇒ h2 =

h3 = 0. This indeterminacy can be avoided

defining Atan2 (0, 0)
∆
= 0. With assumption that

qt is the origin, this proposition ensures, that

e∗ = 0 ⇒ θ1d = θ1t ⇒ e1d ≡ e1. It should

be noted, that the indeterminacy of the type

θ1d = Atan2 (0, 0) never occurs if the condition

(64) is met. Assuming ‖ e∗(0)‖ 6= 0, such inde-

terminacy could only occur at the limit τ →∞,

what theoretically means never [2, 1]. Although

from a practical point of view and in the case

when ‖ e∗(0)‖ = 0, determination of θ1d and

θ̇1d at this point is needed. The proposition is to

take for ‖ e∗‖ = 0: θ1d ∆= 0 = θ1t and θ̇1d
∆
= 0,

what allows to use controls (50) and (56) without

changes.

Remark 4 Fulfilling the conditions: (7) and

∀τ<∞ ‖h∗‖ 6= 0 during the transient stage de-

pends on the effectiveness of the orienting process

– the shorter time interval τγ (see (64)), the ear-

lier convergence rate of e∗ becomes exponential.

Hence to ensure above mentioned conditions dur-

ing the transient stage, the following strategy can

be applied : use the orienting control (50) with

u2 = 0 to meet condition (64). Next apply the

complete VFO stabilizer (50) and (56) to accom-

plish the stabilization task ensuring exponential

convergence of ‖ e∗‖ to zero.

4. Simulation results. To show the effective-

ness of the proposed stabilization strategies, nu-

merical simulations have been conducted. For

both control approaches stabilized reference point

has been set to be the origin: qt
∆
= [0 0 0]T . Sim-

ulations have been carried out within the time

horizon τh = 10[s] and for the following ini-

tial conditions: θ1(0) = −0.8[rad], θ2(0) =

1.2[rad] and θ3(0) = 0.5[rad].

4.1. TVO stabilizer. The parameters of the

controller presented in Section 3.1 have been se-

lected as: k1 = k2 = 6, ξ (0) = 1√
2
[1 − 1]T ,

ψ1 = ψ2 = 1.5, ε1 = ε2 = 10
−3 and α1 =

α2 = 2.5. The simulations have been performed

in two cases. In the first case time derivative of Ψ

was used while in the second case it was ignored

according to simplified version of the controller

given by (40).

Based on time plots of regulation errors de-

picted in Figs. 5 and 6 one can conclude, that ne-

glecting the term Ψ̇ allows to improve transient

behavior and to reduce oscillations. Convergence

rate of the error, e, for both TVO controllers are

quite similar. In addition, dynamic properties of

the simplified control scheme seems to be sig-

nificantly better. It should be noted, that in both

cases singular points in the configuration space

are avoided (compare paths in Fig. 8).

Fig. 7 shows both physical, u, and virtual, uω ,

control signals. According to it one can see that

they are bounded for τ > 0. Relatively high val-

ues of u at the beginning of regulation process

results from nonlinearity of transformation P

(note that θ2(0) is quite far from the origin and

near a singular point).

4.2. VFO stabilizer. The VFO stabilizer has

been tested assuming the following parameter

values: k1 = 5, kp = 5 and η = 3. Since con-

tinuous variables θi(τ) ∈ R, i = 1, 2, 3 were not

limited to the range [−π, π), to avoid disconti-

nuity resulting from definition (45), the contin-

uous method of determining (45) has been ap-

plied, which is equivalent to the following for-

mula: θ1d(τ) = θ1d(0) +
∫ τh

0
θ̇1d(τ)dτ , where

θ1d(0) is computed by (45), θ̇1d(τ) is taken from

(49) and the integral is computed numerically.

As a consequence, the terms θ1d and e1d ∈ R

are continuous.

Dynamic and static quality can be evaluated

comparing Figs. 9-12. From Fig. 9 it can be seen,

that convergence of stabilization errors is rela-

tively fast and the error e2 tends to zero faster
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Figure 5. Stabilization errors for original TVO con-

troller: e1(τ) (–), e2(τ) (- -), e3(τ) (· · · ).
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Figure 6. Stabilization errors for simplified TVO con-

troller: e1(τ) (–), e2(τ) (- -), e3(τ) (· · · ).
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Figure 7. Control signals for simplified TVO controller:

u1(τ) (- -), u2(τ) (–) and uω(τ) (· · · ).

0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x [m]

y 
[m

]

Figure 8. Manipulator’s tip path in the task space: orig-

inal TVO controller (- -), simplified TVO controller (-.-).

than e3. As a result e1 converges to zero, but only

as a last one (compare remarks from the proof).

Orienting process is very effective, which comes

directly from Fig. 10 – directions of g∗2 and h∗

vector fields coincide after about 1[s]. This result

seems to justify the VFO methodology. More-

over, using simple geometrical interpretation of

the VFO methodology and as cosα → −1 one

can say, that manipulator reaches the reference

posture qt in the manner . According to Fig. 11

it results, that control signals are bounded, with

relatively low cost – non-oscillatory behavior of

the controlled system during the transient stage.

System movement in the task space has been pre-

sented in Fig. 12.

5. Conclusions. In this paper two control sta-

bilization strategies for a 3-link nonholonomic

manipulator have been presented. Performances

of both controllers have been examined by nu-

merical simulations. The first stabilization ap-

proach uses a time-varying control law based on

the tuned kinematic oscillator concept and en-

sures practical stability. It can be used to stabilize

other underactuated systems such as the unicycle

robot, the skid-steering vehicle [12] and others.

Moreover, because TVO control signals are time-

differentiable, the TVO stabilizer can be easily

extended to include dynamic model of the con-

trolled system [4, 12]. The second controller -

VFO stabilizer - results from a simple and intu-

itive geometrical interpretation of the controlled

kinematic structure and its possible time evolu-

tion in response to specific inputs. This stabilizer

belongs to the class of non-Lipschitz continuous

controllers guaranteeing asymptotic stability. The

VFO stabilizer can be treated as an extension of

the tracking controller introduced in [6] and can

be applied also to another nonholonomic kine-

matics with specific structure like unicycle robot,

car-like robot or chained system.
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