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Abstract

The paper is devoted to the novel feedback control strategy for the standard N-trailer robot
kinematics expected to perform a tracking task for feasible reference trajectories. The control
method proposed results from solely geometrical features of vehicle kinematics formulated in a
cascaded-form, and especially from the way the velocity components propagate along a vehicle
kinematic chain. The control strategy is derived for the original vehicle configuration space not
involving any model transformations or approximations. Formal considerations are examined by
simulation results of the backward tracking maneuvers for a 3-trailer vehicle.

1 Introduction

Nonholonomic articulated mobile robots consisting of the active tractor linked to the N passive
trailers, although fully controllable [8], are especially demanding for control. Difficulties result
from three main reasons: the less number of control inputs in comparison to the number of
controlled variables in the presence of the nonintegrable motion constraints, the singularities of
the vehicle kinematic model [5], and the vehicle folding effect arising during backward maneuvers
leading to the so-called jack-knifing phenomenon. The kinematic structure of the N-trailer vehicle
can be treated as an equivalent skeleton of many practical vehicles. The manual maneuvers with
articulated vehicles are difficult, even for experienced drivers, thus automation of motion control
for such vehicles seems to be desirable in practice, [15]. Examples of tracking control laws for the
multiple-trailer robots can be found in [2, 10], and for the vehicles with a single trailer in [7, 11].
The most popular approach to the control design relies on the auxiliary transformation of the
vehicle model into the chained form, which is possible for the standard N-trailer system due to
its differential flatness property, [1, 12–14]. Since the transformation is only locally well defined,
utilization of the control solutions based on the chained form approximation may be limiting in
applications.

In this paper we present an alternative tracking control strategy for the standard N-trailer
mobile robot composed of the unicycle-like tractor followed by N passive trailers hooked at a mid-
point of a preceding wheel-axle (see Fig. 1). The proposed approach, resulting from geometrical
arguments, does not involve any state or input transformations; it is formulated in the original
configuration space of the controlled vehicle. The resultant control law has a cascaded structure
with clearly interpretable components. As a consequence, tunning of the controller parameters is
simple yielding the non-oscillatory vehicle motion in the task space. The concept is formulated
using the Vector-Field-Orientation (VFO) control approach for the last vehicle trailer, allowing
one to solve the tracking task for the whole set of feasible and persistently exciting reference
trajectories (see [4] and also [3]).
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Figure 1: The standard N-trailer vehicle in a global frame (fig. a)) and the schematic diagram of the N-trailer vehicle kinematics
in a cascaded form with inputs ω0, v0 and configuration q (fig. b)).

2 Vehicle model and the control task

Kinematic skeleton of an articulated vehicle under consideration is presented in Fig. 1. The vehicle
consists of N + 1 segments: the unicycle-like tractor (active segment) followed by N semi-trailers
(passive segments) of the length Li > 0, i = 1, . . . , N , where every trailer is hitched with a rotary
joint located exactly on the axle mid-point of a preceding vehicle segment. Configuration of the
vehicle can be represented by vector q = [β1 . . . βN θN xN yN ]T ∈ R

N+3 with geometrical
interpretation coming from Fig. 1. The guidance point P = (xN , yN ) of the vehicle, playing
the key role in the tracking control task (defined in Section 2), is represented by the position
coordinates of the last-trailer posture vector q = [θN xN yN ]T ∈ R

3. The control inputs of the
vehicle u0 = [ω0 v0]T ∈ R

2 are the angular ω0 and the longitudinal v0 velocities of the tractor.
Let us formulate kinematics of the vehicle in a way useful for the subsequent control develop-

ment. In order to do this, every i-th segment (i = 0, 1, . . . , N) of the vehicle kinematic chain will
be described by the unicycle model (cf. Fig. 1):

θ̇i = ωi, ẋi = vi cos θi, ẏi = vi sin θi. (1)

The tractor kinematics is obtained taking i = 0 where ω0 and v0 are the physical control inputs.
For i = 1, 2, . . . , N the fictitious control inputs ωi, vi of the i-th trailer result from two recurrent
equations:

ωi =
1

Li

vi−1 sin βi, vi = vi−1 cos βi, (2)

where βi is the i-th joint angle determined by

βi = θi−1 − θi. (3)

Using equations (2)-(3) one can describe how the physical inputs ω0 and v0 propagate to the
i-th trailer along the vehicle kinematic chain. This is explained by the block diagram in Fig. 1
(subfigure b)), which represents the general N-trailer vehicle kinematics in the above cascaded-like
formulation [12].
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Since the guidance point P = (xN , yN) has been selected on the last trailer, the control task
will be formulated with a special attention paid to the last vehicle segment. This selection of
the guidance point is theoretically justified, since the coordinates xN , yN are the flat outputs of
the vehicle kinematics [13], and the differential flatness is a key feature implicitly utilized in the
subsequent control development.

Let qt(τ) = [βt1(τ) . . . βtN (τ) θtN (τ) xtN (τ) ytN(τ)]T ∈ R
N+3 denote the reference configu-

ration trajectory of the vehicle. Define the configuration tracking error e(τ) =
[

eT
β (τ) eT (τ)

]T
,

qt(τ) − q(τ) with the joint-angle tracking error component

eβ(τ) , [βt1(τ) − β1(τ) . . . βtN (τ) − βN (τ)]T ∈ R
N (4)

and the last-trailer posture tracking error component

e(τ) =





eθ

ex

ey



 , qt(τ) − q(τ) =





θtN (τ) − θN (τ)
xtN (τ) − xN (τ)
ytN(τ) − yN (τ)



 ∈ R
3. (5)

Assuming that:

A1 the reference trajectory qt(τ) is feasible (meets the vehicle kinematics for all τ > 0) and is
persistently exciting, namely ẋ2

tN (τ) + ẏ2
tN (τ) 6= 0 for all τ > 0,

A2 all components of the configuration q are measurable,

A3 all the vehicle kinematic parameters Li are known,

the control problem is to design a feedback control law u0 = u0(qt(τ), q(τ), ·) which applied to
the vehicle kinematics represented by (1)-(3) makes the error e(τ) convergent in the sense that:

lim
τ→∞

‖e(τ)‖ 6 δ1 and lim
τ→∞

‖eβ(τ)‖ 6 δ2, (6)

with τ denoting the time variable, and δ1, δ2 > 0 are the vicinities of zero in the particular tracking
error spaces. In the paper the two cases of asymptotic (δ1 = δ2 = 0) and practical (δ1, δ2 > 0)
convergence will be illustrated.

3 Feedback control strategy

The proposed control strategy for the standard N-trailer robot results from equations (2) which
describe propagation of the tractor velocities to particular trailers along the vehicle kinematic
chain. In order to explain our concept let us begin from the last vehicle trailer where the guidance
point P is located. We can make a thought experiment where the N -th trailer is separated from
the remaining vehicle chain and treated as the unicycle-like vehicle with control inputs ωN , vN

(cf. Fig. 1). Furthermore, let us assume that feedback control functions ωN := Φω(e(τ), ·) and
vN := Φv(e(τ), ·) (defined in Section 3.2) which ensure asymptotic convergence of the tracking
posture error e(τ) for the unicycle model (1) with i := N are given.

Formulating the control strategy we need to answer the question: how can one force the control
signals ωN := Φω and vN := Φv in the case when the N -th trailer is not driven directly, but it is
passive and linked to the whole kinematic chain driven only by the tractor inputs ω0, v0. One can
answer the question utilizing the fact that the motion of the N -th trailer is a direct consequence of
motion of the (N − 1)-st trailer. Thus designing the appropriate desired motion for the latter can
help forcing the desired control action determined by functions Φω and Φv for the N -th trailer.
Relations (2) reveal how to design the fictitious input vN−1 of the (N − 1)-th trailer and the joint
angle βN and, as a consequence, the design of the fictitious input ωN−1 can be devised (it will
be formalized in the next subsection). Again, the fictitious inputs vN−1, ωN−1 cannot be forced
directly, but only through the (N − 2)-nd vehicle segment. Proceeding analogous reasoning for
the whole kinematic chain (where the i-th segment influences motion of the (i + 1)-st), one can
derive the control law for physically available tractor inputs ω0, v0, which should accomplish the
desired motion of the last trailer (guiding segment).
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Figure 2: Schema of the i-th Single Control Module (SCMi) with a feedback from joint angle βi.

3.1 Control law design

Denote by ωdi and vdi (i = 1, . . . , N) the desired fictitious inputs which the i-th vehicle segment
should be forced with in order to execute the desired motion of the (i + 1)-st segment. Formulas
which determine the desired longitudinal velocity vdi−1 for the (i− 1)-st vehicle segment and the
desired value for the i-th joint angle can be obtained by combination of relations (2), namely:

vdi−1 , Liωdi sin βi + vdi cos βi, (7)

βdi , Atan2c (Liωdi · vdi−1, vdi · vdi−1) ∈ R, (8)

where Atan2c (·, ·) : R×R 7→ R is a continuous version of the four-quadrant function Atan2 (·, ·) :
R×R 7→ (−π, π] (it has been introduced to ensure continuity of βdi signals1), and the term vdi−1

used in (8) determines the appropriate sign of the two function arguments. Whereas equation
(7) determines one of the desired fictitious inputs of the (i − 1)-st segment, the desired angular
fictitious input ωdi−1 remains to be determined. To do this let us differentiate relation (3) and
utilize (1) to obtain

β̇i = ωi−1 − ωi =: νi. (9)

The above relation may suggest definition of νi to make the auxiliary joint angle error

edi , (βdi − βi) ∈ R (10)

converge to zero. By taking νi , kiedi + β̇di with ki > 0 and β̇di ≡ dβdi/dτ , one gets the
differential equation ėdi + kiedi = 0, which implies the exponential convergence edi(τ) → 0 as
τ → ∞. According to (9), the desired angular velocity for the (i − 1)-st vehicle segment can be
defined as follows:

ωdi−1 , νi + ωdi , kiedi + β̇di + ωdi, (11)

where ki > 0 is now a control design coefficient, and β̇di plays a role of the feed-forward component.
Definitions (7), (8), and (11) constitute the so-called i-th Single Control Module (SCMi)

explained by the schematic diagram in Fig. 2, where the feedback from the joint angle βi has
been denoted. Serial connection of SCMi blocks allows propagating the computations of desired
velocities between arbitrary number of vehicle segments. Recurrent relations formulated in (7),
(8), and (11) are iterated from i = N to i = 1, starting from the last trailer by taking ωdN :=
Φω(e(τ), ·), vdN := Φv(e(τ), ·) and finishing on the tractor segment obtaining the control inputs
ω0 := ωd0(·), v0 := vd0(·). Equations of the resultant feedback controller for the standard N-trailer

1We refer to [4] for computation details of Atan2c (·, ·) function.
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Figure 3: Schema of the proposed cascaded control system for the standard N-trailer vehicle. The controller consists of N

Single Control Modules using a feedback from joint angles βi, and the Last-Trailer Posture Tracker (LTPT) block designed for
the last trailer treated as the unicycle.

vehicle are formulated as follows:

vdN := Φv(e(τ), ·) (12)

ωdN := Φω(e(τ), ·) (13)

vdN−1 := LNωdN sin βN + vdN cos βN (14)

βdN := Atan2c (LNωdN · vdN−1, vdN · vdN−1) (15)

ωdN−1 := kN (βdN − βN ) + β̇dN + ωdN (16)

...

vd1 := L2ωd2 sin β2 + vd2 cos β2 (17)

βd2 := Atan2c (L2ωd2 · vd1, vd2 · vd1) (18)

ωd1 := k2(βd2 − β2) + β̇d2 + ωd2 (19)

v0 = v0d := L1ωd1 sin β1 + vd1 cos β1 (20)

βd1 := Atan2c (L1ωd1 · vd0, vd1 · vd0) (21)

ω0 = ωd0 := k1(βd1 − β1) + β̇d1 + ωd1. (22)

Equations (20) and (22) express direct application of the desired velocities computed for the
vehicle segment number zero to the control inputs of the vehicle tractor. Figure 3 illustrates
the structure of the proposed cascaded control system, where the Last-Trailer Posture Tracker
(LTPT) block represents the tracking control module designed for the unicycle kinematics of the
last trailer. This block computes the feedback control functions Φω(e(τ), ·) and Φv(e(τ), ·) used in
equations (12)-(13). Note that according to the defined control task (cf. Section 2) the controlled
output of the articulated vehicle is the last trailer posture q ∈ R

3, while the angles β1 to βN are
the auxiliary outputs used in the SCMi blocks.

Control strategy presented so far generally does not prevent the vehicle folding effect. It is a
consequence of definition (8), where the desired angles are the real (unbounded) variables. Since
it may be limiting in most practical application, we propose to modify definition (7) in order to
avoid the folding effect by taking:

vdi−1 , σ |Liωdi sin βi + vdi cos βi| , (23)

where σ ∈ {−1, +1} is the decision variable which is inherited from the VFO controller used in
LTPT block and determined in Subsection 3.2. By modification (23) and leaving other definitions
unchanged, and due to characteristic features of the VFO controller (see [4]) the second argument
of Atan2c (·, ·) function in (8) may now have a constant non-negative sign for almost all time
of the vehicle motion. Hence, the image of function Atan2c (·, ·) can be limited to the first and
fourth quadrant, minimizing possibility of the folding effect occurence. Summarizing, the only
modifications of the controller (12)-(22) are required for (14), (17), and (20) by replacing them
with definition (23) using the appropriate indexes.

To accomplish derivation of a feedback controller for the articulated vehicle it remains to
determine the feedback functions Φv and Φω used by the LTPT block (see (12)-(13)). Explicit
definitions of these functions are given and briefly commented in the next subsection using the
original VFO concept.
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3.2 Last-Trailer Posture Tracker – the VFO controller

The VFO control approach comes from geometrical interpretations related to the unicycle kine-
matics (1). Our selection of the VFO method for the LTPT block is motivated by the specific
features of the VFO controller, which guarantees fast and non-oscillatory tracking error conver-
gence in the closed-loop system. Let us briefly recall equations of the VFO tracker, written for
the unicycle model of the last trailer, with short explanation of its particular terms (more detailed
description can be found in [4]).

The VFO controller can be formulated as follows:

Φω , kaea + θ̇a, Φv , hx cos θN + hy sin θN , (24)

where Φω is called the orienting control, and Φv the pushing control. Particular terms in the above
definitions are determined as follows:

hx = kpex + ẋtN , hy = kpey + ẏtN , ea = θa − θN , (25)

θa = Atan2c (σ · hy, σ · hx) , θ̇a = (ḣyhx − hyḣx)/(h2
x + h2

y), (26)

where ka, kp > 0 are the design coefficients. The decision factor σ , sgn(vtN ) ∈ {−1, +1} (used
also in (23)) allows designer to select the desired motion strategy: forward if vtN (τ) > 0 or
backward if vtN (τ) < 0, where vtN (τ) = σ

√

ẋ2
tN (τ) + ẏ2

tN (τ) denotes the reference longitudinal
velocity defined along qt(τ). Note that ex and ey are the components of error (5). It has been
proved in [4] that functions defined by (24) guarantee asymptotic convergence of error e(τ) to
zero assuming that they are directly forced as inputs to the unicycle-like kinematics.

In the case of an articulated vehicle the functions (24) have to be substituted into (12) and
(13) yielding the complete tracking controller for the N-trailer vehicle.

Remark 1 The desired joint angles (8) and their time-derivatives are undetermined at the time
instants τI when the two arguments of function Atan2c (·, ·) are simultaneously equal to zero.
We propose to cope with this problem using at τI the limit values β−

di and β̇−

di, where β−

di =

limτ→τ
−

I

βdi(τ) and β̇−

di = limτ→τ
−

I

β̇di(τ).

The explicit formulas of time-derivatives β̇di used in eqs. (16), (19), and (22) may be obtained by
formal differentiation of definition (8), which involves the time-derivatives of signals ωdi and vdi.
Since this may cause difficulties in practical implementation, we propose to use instead the so-called
robust exact differentiator proposed in [9], or approximate the terms β̇di by their filtered versions
β̇diF = L−1 {sβdi(s)/(1 + sTF )}, which are numerically computable. For tracking the rectilinear
or circular reference trajectories the terms β̇di can be even omitted in control implementation
(since now β̇ti ≡ 0), assuming however sufficiently high values for gains ki to preserve stability
of the closed-loop system. Control effectiveness in the latter case will be illustrated by simulation
Sim2 in the next section.

4 Simulation results and discussion

Performance of the closed-loop system with the proposed tracking controller is illustrated by the
results of two simulations of backward motion maneuvers: for the advanced reference trajectory
(Sim1), and for the circular reference trajectory (Sim2). The reference signals qt(τ) have been gen-
erated as a solution of the unicycle model with the reference inputs ωt3 := 0.15(1+sin 0.3τ) rad/s,
vt3 := −0.2 m/s for Sim1, and ωt3 := 0.15 rad/s, vt3 := −0.2 m/s for Sim2, taking the initial con-
figuration for the reference vehicle qt(0) = [0 0 0 π

2
−1 0]T . Vehicle initial configurations have been

selected as follows: q(0) = [0 0 0 π
2

0 0]T for Sim1, and qt(0) = [0 0 0 π 0 0]T for Sim2. The follow-
ing common numerical values have been selected for both simulations: L1 = L2 = L3 = 0.25 m,
k1 = 50, k2 = 20, k3 = 5, ka = 2, kp = 1. For Sim1 the feed-forward terms β̇di, i = 1, 2, 3 have

been approximated by β̇diF (see Remark 1) using the filter time-constant TF = 0.05 s. In the
case Sim2, the simplified control implementation with β̇d2,3 := 0 has been used. The results of
simulations are presented in Fig. 4. For the two simulation tests the relatively demanding initial
configurations of the controlled vehicle have been selected in order to show effectiveness of the
proposed control strategy, especially in the context of the vehicle folding effect avoidance.
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Figure 4: Backward tracking maneuvers in the (x, y) plane (dimensions in [m]): for the advanced reference trajectory (Sim1,
left) and for the circular trajectory (Sim2, right). Initial vehicle configuration q(0) and initial reference configuration qt(0) are
denoted in the figure (the former is highlighted in magenta); the last trailer is denoted by the red rectangle, the tractor – by the
black triangle; evolution of the reference trailer posture is denoted by the green marks.
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Figure 5: Time plots of the last-trailer posture errors in a logarithmic scale (left), the vehicle joint angles (middle), and the
tractor control inputs (right) for simulation Sim1 (top) and Sim2 (bottom).

7



Reference trajectories selected for simulations Sim1 and Sim2 differ each other qualitatively.
For the circular trajectory (Sim2) the reference velocities and reference joint angles remain con-
stant, while for the advanced trajectory they are time-varying (it justifies the term advanced
trajectory for Sim1). Tracking the circular trajectory is inherently easier and it permits the
simplified control implementation with β̇di := 0 simultaneously preserving the asymptotic con-
vergence of errors in (6). It is confirmed by bottom plots in Fig. 5 where the last-trailer posture
errors converge toward zero and all the joint angles βi converge to the constant steady-state values
βis resulting from the formula |βis| = π

2
− arctan(ri/Li), where r2

i = r2
t + L2

N + . . . + L2
i+1 and

rt = |vtN/ωtN | > 0 is a radius of the reference circle trajectory.
For simulation Sim1 the feed-forward terms β̇di have been approximated by their filtered ver-

sions β̇diF in order to obtain better tracking precision for time-varying reference signals. However,
due to the approximations the error convergence obtained in (6) is only the practical one with
the values of δ1 and δ2 depending on the quality of these approximations. This is visible in
Fig. 5 where the last-trailer posture errors converge to some small envelope near zero. Influence
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Figure 6: Left: evolution of ‖ e(τ)‖ for two control implementations in Sim1: with the terms β̇d1,2,3 approximated numerically

(denoted by
∣

∣e1
∣

∣), and with β̇d2,3 := 0 (denoted by
∣

∣e2
∣

∣). Right: closed-loop robustness to parametric uncertainty as a plot
of ‖ e(τ)‖ for three sets of vehicle segment lengths: Lis = Li (nominal), Lis = 1.05Li (overestimated), and Lis = 0.95Li

(underestimated).

of the quality of numerical approximations for β̇di terms is shown in Fig. 6 (left plot) where the
evolution of ‖ e(τ)‖ is presented for two scenarios of simulation Sim1: when all the terms β̇di

are approximated by β̇diF , and when β̇d1 is still approximated but β̇d2,3 are taken as equal to
zero (simplified implementation as for Sim2). One can see that in both scenarios stability of the
closed-loop system is preserved, but the obtained size of envelope δ1 is bigger for the simplified
control implementation.

In practice the nominal values of parameters Li used in the recurrence (7) (or (23)) and
(8) may be unknown. Robustness of the proposed controller to the parametric uncertainty has
been examined by running additional tests for conditions of simulation Sim1 assuming now 5%
uncertainty of the vehicle segment lengths. In the first scenario we have used the overestimated
parameters by taking in the controller equations the lengths Lis = 1.05 · Li. In the second
scenario the underestimated parameters Lis = 0.95 · Li have been used. Robustness can be
assessed analyzing the right-hand side plots presented in Fig. 6. For the two scenarios stability of
the closed-loop system has been preserved. Note that the transient states obtained are virtually
indistinguishable in comparison to the nominal case (i.e. when Lis = Li).

The control performance obtained in the presence of feedback measurement noises and small
offset errors of the trailer hitching points location can be assessed analyzing the preliminary results
in Fig. 7. In this case the 0.01 m hitching offsets have been applied to the robot, and the normally
distributed measurement noises with variances Vβ1,2,3 = 10−7, Vθ,x,y = 10−6 have been added to

the feedback signals. During the test the simplified control implementation with β̇d2,3 := 0 was
used. Note that sensitivity to the measurement noises increases along the vehicle kinematic chain
and is the highest on the tractor side.

5 Final remarks

In the paper the novel tracking control strategy for the standard N-trailer robot has been pre-
sented. Origins of the concept come from geometrical interpretations of the vehicle kinematics
formulated in a cascaded form, and also from propagation of velocities along the vehicle kinematic
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Figure 7: Time plots of the last-trailer posture errors (left) and the joint angles (right) for tracking with small hitching offsets
in the vehicle and the measurement noises present in feedback.

chain. The resultant control system consists of two main components: the serial chain of Single
Control Modules with the inner joint-angle feedback loops, and the Last-Trailer Posture Tracker
in an outer loop dedicated to the last-trailer segment treated as the unicycle.

The question which naturally arises here concerns the possibility of applying in the LTPT block
the feedback controllers other than the VFO one proposed above. Preliminary simulation results
obtained by the author (however not presented in this paper) indicate that it my be successful.
The necessary and sufficient conditions which the outer-loop controllers should meet to ensure
stability and convergence of the closed-loop system has to be investigated yet.

Stability of the proposed closed-loop system remains to be shown. The preliminary analysis
conducted so far seems to be promising, since it reveals that the dynamics of the last-trailer
posture error (5) and the auxiliary joint error ed = [ed1 . . . edN ]T can be written as ė = f(e, τ)+
f1(e, ed, τ) and ėd = Aed + f2(e, ed, τ), where f1(e, ed, τ) = G(qt(τ) − e)Γeωv(e, ed, τ), G(·)
is the unicycle kinematics matrix, f2(e, ed, τ) = Heωv(e, ed, τ), eωv = [eT

ω eT
v ]T , eω = [ωd1 −

ω1 . . . ωdN − ωN ]T , ev = [vd1 − v1 . . . vdN − vN ]T , A = diag{−ki} is Hurwitz, and Γ and H

are the appropriate constant matrices with −1, 0, and +1 entries. Furthermore, one can show
that f2(ed = 0, ·) = 0, f1(ed = 0, ·) = 0, and the nominal (unperturbed) dynamics ė = f(e, τ)
is asymptotically stable (see the proof in [4]). We plan to proceed our further analysis using the
stability theorems of interconnected systems, [6], showing first the required features of functions
f1(·) and f2(·). If the convergence for e and ed is shown, the convergence of the joint angle error
(4) might result from the flatness property of the vehicle and feasibility of the reference trajectory
qt(τ). Specifically, since Φv(e = 0, ·) = vtN (τ) and Φω(e = 0, ·) = ωtN (τ), then according to
(14)-(21) it could be shown that (βdi − βti) → 0 as e → 0, which would complete the proof
recalling the asymptotic convergence of ed.
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