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Abstract— The paper presents the concept and stability anal-
ysis of a trajectory-tracking feedback control system for truly
N-trailer robots equipped with arbitrary number of trailer s
interconnected by the non-zero hitching offsets. Thanks to
application of the cascaded-like control structure the considered
solution is modular and highly scalable with respect to a
number of trailers. Formal analysis of the closed-loop system
provides sufficient conditions for asymptotic tracking of awhole
set of the so-calledsegment-platooning reference trajectories
with constant as well as time-varying curvature under assump-
tion of sign-homogeneous hitching of trailers. Generalityof the
concept description together with formal analysis presented
in the paper fills in some extent the gap which arose in the
literature in the context of trajectory tracking with N-tra ilers of
differentially non-flat kinematics. Simulation examples validate
utility and modularity of the control method.

I. I NTRODUCTION

We are interested in the trajectory-tracking problem for
truly N-trailer robotic vehicles (in short: N-trailers) com-
prising the unicycle-like tractor andarbitrary number of
off-axle hitched trailers attached in a chain by the passive
rotary joints (see Fig. 1). The N-trailers are practically
important and very interesting hard-to-control systems due
to specific properties of their kinematics [10], [9], [1],
[7]. Most control solutions for truly N-trailers availablein
the literature concern time-non-critical tasks, i.e. the set-
point stabilization and path-following problem, see e.g. [11],
[2], [20], [3], [8] and [16]. Although numerous specialized
tracking control laws were devised for tractor-trailer robots
with strictly limited number of trailers (typically forN ≤ 2),
only very limited number of tracking controllers have been
proposed for truly N-trailers. In this context, one may recall
for instance solutions proposed in [15], [6], [17] for the
differentially flat Standard N-Trailer (SNT) robots equipped
solely with on-axle hitches (for a notion of differential
flatness the reader is referred to [19]). To the author’s best
knowledge, the only trajectory tracking control approach
elaborated for differentially non-flat truly N-trailers equipped
solely with off-axle hitches – the so-called non-Standard N-
Trailers (nSNT) [7] – have been proposed in [4] by exploiting
a cascaded-like control structure. However, the authors in
[4] limited their considerations (among other restrictions
imposed) only to backward tracking of constant-curvature
reference trajectories (rectilinear and circular ones) assuming
omnidirectional kinematics of a tractor. Furthermore, formal
stability analysis of the closed-loop system provided in [4]
was limited only to the case of a tractor-single-trailer system
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(N = 1). Therefore, one may have a strong feeling that the
control approach presented in [4] has not been fully explored
to reveal its actual potential.

The aim of the current paper is to provide generic descrip-
tion and stability analysis of the modular trajectory tracking
control system for truly nSNT robots based on the cascaded-
like control concept presented in [4] (see also [13]). The
new description substantially relaxes restrictions imposed in
[4]. In particular, by introducing a set ofsegment-platooning
reference trajectories (admitting both constant-curvature and
varying-curvature trajectories) the sufficient conditions for
local asymptotic stability of the closed-loop system are
derived for both backward and forward motion strategies of
a truly N-trailer vehicle with off-axle hitching, preserving
location of the guidance point on a last trailer. Modularityof
the concept is illustrated by exemplary simulations applying
two alternative unicycle controllers in the outer loop of the
cascaded-like control system.

II. K INEMATICS OF N-TRAILERS AND ASSUMPTIONS

Configuration of the N-trailer can be uniquely determined
by a vector (see Fig. 1 for geometrical interpretation)

q , [β1 . . . βN θN xN yN ]> =

[

β

qN

]

∈ T
N × R

3, (1)

whereβ is the joint-angle vector, whileqN denotes a posture
of a last trailer (called theguidance segment) comprising the
trailer-body orientationθN and position coordinatesxN , yN
of the guidance pointP . The control input to the vehicle is
a velocity vectoru0 = [ω0 v0]

> ∈ R
2 whereω0 andv0 are

the angular and longitudinal velocities of the unicycle-like
tractor, respectively.

Kinematic structure of the N-trailer is characterized by two
kinds of parameters (see Fig. 1): trailer lengthsLi > 0 and
hitching offsetsLhi ∈ R, i = 1, . . . , N . We adopt the sign
convention whereLhi > 0 if the ith joint is locatedbehind
the wheels-axle of the(i− 1)st segment, andLhi < 0 in the
opposite case. From now on we restrict considerations to the
N-trailers which satisfy the following assumptions:

A1. ∀ i ∈ {1, . . . , N} Lhi 6= 0,
A2. LhiLhj > 0 for all i, j ∈ {1, . . . , N},
A3. ∀ i ∈ {1, . . . , N} |Lhi| < Li if Lhi < 0.

Assumption A1 confines considered N-trailers to the nSNT
type. A2 assumes common signs for all the hitching offsets
(all positive or all negative –sign-homogeneous hitching);
necessity of introducing A2 is dictated by the need of the
jackknife phenomenon avoidance in the proposed control
system as it will be clarified in Section IV. For the first sight,
A2 may seem substantially limiting, however most practical



Fig. 1. Kinematic structure of the nSNT in a global frame{xG, yG};
ICRi and VSWi denote, respectively, instantaneous center of rotation of
the ith vehicle segment and virtual steering wheel of theith joint (cf. [1]).

structures of N-trailer robots in fact meet this assumption.
Limitation A3 is clearly justified by practical mechanical
constraints.

Treating particular vehicle segments as unicycles

θ̇i = ωi, ẋi = vicθi, ẏi = visθi, i = 0, . . . , N, (2)

whereui = [ωi vi]
> ∈ R

2 is a velocity vector of theith
segment, one can find that the following geometrical relation
holds for any two neighboring segments [7]:

ui =

[

−Lhi

Li
cβi

1
Li

sβi

Lhi sβi cβi

]

ui−1 =: Ji(βi)ui−1, (3)

where transformation matrixJi(βi) is invertible for anyβi

under assumption A1, leading to the inverse relation

ui−1 =

[

−Li

Lhi

cβi
1

Lhi

sβi

Li sβi cβi

]

ui =: J−1
i (βi)ui. (4)

Following works [7] and [12] one may recall that kinematics
of the N-trailers can be expressed as a drift-free system

q̇ =

[

β̇

q̇N

]

=

[

Sβ(β)
SN (β, qN )

]

u0, (5)

with sub-matrices

Sβ =











c>Γ1(β1)
c>Γ2(β2)J1(β1)

...
c>ΓN (βN )J1

N−1(β)











, SN =





c>J1
N (β)

d>J1
N (β)cθN

d>J1
N (β)sθN



 ,

(6)

whereΓi(βi) , I − Ji(βi), I ∈ R
2×2 is a unit matrix,

J1
i (β) , Ji(βi) . . .J1(β1), andc> , [1 0], d> , [0 1].

III. C ONTROL PROBLEM ANDS-PTRAJECTORIES

Let us complement kinematics (5) with definition of the
system outputy , qN = Cq, C = [03×N I3×3], being
the posture of the guidance segment. Assume theadmissible
output reference trajectory is given

yr(t) = qNr(t) = [θNr(t) xNr(t) yNr(t)]
> ∈ R

3 (7)

satisfying unicycle kinematics (2), that is

q̇Nr = G(qNr)uNr, G =

[

1 0 0
0 cθNr sθNr

]>

, (8)

whereuNr = [ωNr vNr]
> ∈ R

2 is a reference velocity
alongyr(t) such thatωNr(t), vNr(t), ω̇Nr(t), v̇Nr(t) ∈ L∞,
and additionally∀ t ≥ 0 ‖uNr(t)‖ 6= 0. The latter require-
ment reflects a generalpersistent excitation(PE) condition
for trajectory (7). Further, assume that the existence of (7)
determines the existence of a bounded joint-angles reference
trajectory

βr(t) = [β1r(t) . . . βNr(t)]
> ∈ T

N (9)

which, according to (5), has to satisfy an equation of the
exogenous system:

β̇r = Sβ(βr)u0r
(4)
= Sβ(βr)

N
∏

j=1

J−1
j (βjr)uNr. (10)

According to the distinction proposed above, reference tra-
jectory (7) determines desired behavior for the system output
(posture of the guidance segment), whereas (9) defines a
corresponding desired evolution for theinner configuration
of a vehicle. Introducing the joint-angles error and posture
error, respectively, as

β̃ =







β̃1

...
β̃N






, βr−β, eN =





eθ
ex
ey



 ,





θNr − θN
xNr − xN

yNr − yN



 (11)

one can formulate a trajectory-tracking control (TTC) prob-
lem as follows.

Definition 1 (TTC Problem):For nSNT kinematics (5),
satisfying assumptions A1-A3, find a feedback control input
u0 = u0(β, eN , ·) which guarantees asymptotic tracking in
the sense that̃β(t) → 0 and eN (t) → 02µπ as t → ∞,
where02µπ , [2µπ 0 0]>, µ ∈ {0,±1,±2, . . .}.

Remark 1: Introduction of thezero-set02µπ in the above
definition (which includes0 as a special case forµ = 0)
has been motivated by a nature of the angular erroreθ.
Using the zero-set in definition of TTC Problem will enable
considering a wider class of control laws which can solve it.
For simplicity, we will writeeN = 02µπ to indicate thateN
is an element of zero-set for some value ofµ.

Solution to the above stated TTC Problem will be given in
the next section for the set of so-calledsegment-platooning
(S-P) reference trajectories. The S-P reference signals have



been introduced for the first time in [12] in the context of the
path-following task. By analogy, we will call the reference
trajectory qr(t) = [β>

r (t) q>
Nr(t)]

> as S-P if it ensures
satisfaction of the following relation

∀ t ≥ 0 vi−1r(t) · vir(t) > 0, i = 1, . . . , N, (12)

which means that reference longitudinal velocities of any two
neighboring segments are non-zero and have the same signs
along a reference trajectory defined by (7)-(8) and (9)-(10).
It is easy to find thatqr(t) = [0 q>

Nr(t)]
> corresponding

to rectilinear output trajectoryqNr(t) belongs to set S-
P. Further, it can be shown thatqr(t) = [β>

r q>
Nr(t)]

>

corresponding to circular output trajectoryqNr(t) is S-P
when∀ i ∈ {1, . . . , N} βir ∈ (−γi, γi), where1

γi = arccos

(

−min

{

Lhi

Li

,
Li

Lhi

})

if Lhi > 0, (13)

γi = arccos (|Lhi| /Li)) if Lhi < 0. (14)

For more general reference trajectoriesqr(t), corresponding
to varying-curvature output trajectoriesqNr(t), satisfaction
of (12) can be numerically checked off-line by using formula
[

ωir

vir

]

(4)
=

N
∏

j=i+1

J−1
j (βjr)uNr, i = 0, . . . , N − 1, (15)

which holds along anyqr(t) with reference joint-angles (9)
being a ’steady-state’ solution of equation (10).

IV. M ODULAR TRACKING CONTROLLER

A. Cascaded-like control structure for nSNT kinematics

The concept of a cascaded-like controller comes from
inverse relation (4), which upon A1 allows one to write

u0 =

N
∏

j=1

J−1
j (βj)uN . (16)

The above equation reflects how velocityuN of the guidance
segment can be forced by tractor inputu0 in the nSNT
kinematics. Because (16) is a purely algebraic mapping, it is
possible to directly influence motion of the last trailer by the
tractor control input. Thus, the natural choice for the tractor
control-input results from equation

u0(β,Φ) =

[

ω0(β,Φ)
v0(β,Φ)

]

,

N
∏

j=1

J−1
j (βj)Φ(eN , t), (17)

where Φ = [Φω Φv]
> ∈ R

2 is some feedback control
function such that its direct application into unicycle kine-
matics of the guidance segment (i.e. by takinguN :=
Φ(eN , t)) would guarantee asymptotic tracking of the output
reference trajectoryqNr(t). Hence,Φ(eN , t) represents one
of the tracking control laws available in the literature and
devised to the unicycle (see e.g. [14], [5]). To keep further
considerations general enough, assume only thatΦ(eN (t), t)
has some desired properties, namely:

P1. ∀ t ≥ 0 ‖Φ(eN (t), t)‖ < ∞,

1Conditions (13)-(14) are less conservative than those proposed in [12].

P2. uN(t) = Φ(t) ⇒ ‖eN (t)‖ < ∞ ∧ eN (t)
t→∞
−→ 02µπ ,

P3. Φ(02µπ, t) ≡ uNr(t).
Property P1 claims boundedness of control functionΦ. P2
means that making velocityuN(t) of the guidance segment
modeled by (2) equal to the control functionΦ(t) leads to
the bounded and asymptotically convergent posture erroreN
(i.e. P2 reflects efficiency ofΦ when it is directly applied into
unicycle kinematics). P3 indicates thatΦ is well determined
also along the reference trajectory (i.e. foreN = 02µπ).

Worth noting that (17) defines in fact a cascade inter-
connection of the outer-loop tracking controller (dedicated
to the guidance segment) represented byΦ(eN , t), and the
inner-loop velocity transformation (ILT) being the product
of matricesJ−1

i (βi) for i = 1, . . . , N evaluated at current
angular configuration of the vehicle chain. A general scheme
explaining the considered control structure is shown in Fig. 2.

Proposition 1: Cascaded-like control law (17) with feed-
back control functionΦ(eN (t), t) possessing properties P1-
P3 solves the TTC Problem for the S-P reference trajectories
qr(t) = [β>

r (t) q
>
Nr(t)]

> at least locally in the neighborhood
of point (β̃, eN ) = (0,02µπ) under the following conditions:
C1. ∀ t ≥ 0 sgn(vNr(t)) = −sgn(Lhi), i = 1, . . . , N ,
C2. ∀ t ≥ 0 ‖uNr(t)‖ ≤ δ1 and ‖ u̇Nr(t)‖ ≤ δ2 for

sufficiently small constantsδ1, δ2 > 0 in the case of
reference trajectories for whicḣuNr(t) 6≡ 0.

Condition C1 restricts a sign of the longitudinal reference
velocity for the guidance segment by permitting only the
backward tracking strategy if all the hitching offsets are pos-
itive, or forward tracking if the hitching offsets are negative.
C1 justifies introduction of the sign-homogeneity assumption
A2 formulated in Section II. Condition C2 claims sufficiently
slow and smooth reference motion alongqNr(t), although
it concerns only trajectories with time-varying reference
velocities.

Fig. 2. Block scheme of the cascaded-like tracking controller for nSNT.

B. Proof of Proposition 1

One may easily show boundedness of control vector (17),
which directly results from property P1 and from bound-
edness of the Frobenius norm of matrixJ−1

j (βj) under
assumption A1.

Let us examine closed-loop behavior of the guidance
segment. Upon (3) and (17) one can write

uN =

1
∏

j=N

Jj(βj)

N
∏

j=1

J−1
j (βj)Φ(eN , t) = Φ(eN , t).

Thus, one concludes that application of control law (17)
makes the guidance segment move in a way as it would



be directly controlled by functionΦ(eN , t). Now, according
to property P2, one ascertains boundedness of posture error
eN (t) and its asymptotic convergence to02µπ . The above
conclusion is valid for both constant-curvature as well as
varying-curvature reference trajectories regardless they are
of the S-P type or not.

Now, we shall consider stability of the joint-angles error
dynamics. Define the outer-loop control difference

Φ̃(t) , uNr(t)−Φ(eN (t), t). (18)

By taking a time-derivative of error̃β and utilizing (5), (10),
and (18) one obtains the joint-angles error dynamics:

˙̃
β = Sβ(βr)

N
∏

j=1

J−1
j (βjr)uNr

− Sβ(βr − β̃)

N
∏

j=1

J−1
j (βjr − β̃j)(uNr − Φ̃). (19)

One may easily check that(β̃ = 0, Φ̃ = 0) is an equilibrium
of dynamics (19). Closer investigation of equation (19) (see
the form of matrixSβ in (6)) reveals its upper-triangular
form, where theith row can be written (after some algebraic
manipulations) as
˙̃
βi = fi(β̃

N
i ,βr,uNr) + gi(β̃

N
i ,βr, Φ̃), i = 1, . . . , N,

whereβ̃N
i , [β̃i β̃i+1 . . . β̃N ]>, and

fi = c> [I − Ji(βir)]

N
∏

j=i

J−1
j (βjr)uNr

− c>
[

I − Ji(βir)Rhi(β̃i)
]

N
∏

j=i

J−1
j (βjr)Rj(β̃j)uNr,

gi = c>
[

I − Ji(βir)Rhi(β̃i)
]

N
∏

j=i

J−1
j (βjr)Rj(β̃j)Φ̃,

with matrices

Rhi(β̃i) ,

[

cβ̃i
sβ̃i

Lhi

−Lhisβ̃i cβ̃i

]

, Ri(β̃i) ,

[

cβ̃i
sβ̃i

Li

−Lisβ̃i cβ̃i

]

.

Treatingβ̃ as a state and̃Φ as an input, one can linearize (19)
around equilibrium(β̃ = 0, Φ̃ = 0) to yield the approximate
dynamics

˙̃
β = A(βr,uNr)β̃ +B(βr)Φ̃, (20)

where

A(βr,uNr) =











a11 a12 . . . a1N
0 a22 . . . a2N
...

...
. . .

...
0 0 . . . aNN











, B(βr) =











b>1
b>2
...

b>N











with diagonal elements

aii =
[

Lisβir

Lhi

cβir

Lhi

]

N
∏

j=i+1

J−1
j (βjr)uNr, 1 ≤ i < N,

(21)

aNN =
[

LNsβNr

LhN

cβNr

LhN

]

uNr, (22)

with non-zero off-diagonal elements

ail =
[

(1 + Licβir

Lhi

) −sβir

Lhi

]

l
∏

j=i+1

J−1
j (βjr)

×

[

0 1
Ll

−Ll 0

] N
∏

j=l+1

J−1
j (βjr)uNr (23)

valid for i = 1, . . . , N − 1, l = i + 1, . . . , N , and with the
ith row of matrixB(βr) of the form:

b>i =
[

(1 + Lhicβir

Li

) −sβir

Li

]

N
∏

j=i

J−1
j (βjr), i = 1, . . . , N.

Based on the previous considerations, we know that pos-
ture erroreN (t) converges to02µπ independently of joint-
angles errorβ̃(t). In this context, (20) can be understood
as (approximate)inner dynamicsof the closed-loop system.
Upon property P3 and definition (18) it is clear thatΦ̃ = 0

for eN = 02µπ. Thus, one can treat̃Φ in (20) as a bounded
perturbation vanishing in time. As a consequence, one may
analyze stability of dynamics (20) under perfect output-
tracking conditions, that is foreN = 02µπ and Φ̃ = 0.
In this case linear dynamics

˙̃
β = A(βr,uNr) β̃ (24)

describes the approximatezero-dynamicsof the closed-
loop system. Let us analyze properties of state-matrix
A(βr,uNr). Since A has the upper-triangular form, the
eigenvaluesλi(A), i = 1, . . . , N correspond to its diagonal
elements. According to (21)-(22) and recalling (15) and (4)
one can writeaii = vi−1r/Lhi = sgn(vi−1r) |vi−1r |/Lhi

for i = 1, . . . , N . Now, for the S-P reference trajectories
we can utilize (12) which, under condition C1, yields for
i = 1, . . . , N

aii =
sgn(vNr) |vi−1r |

Lhi

=
− |vi−1r|

|Lhi|
≤ −α, (25)

where the bound

α = min
i∈{1,...,N}

{

inf
t≥0

∣

∣

∣

∣

vi−1r

Lhi

∣

∣

∣

∣

}

> 0 (26)

is strictly positive for S-P trajectories thanks to the acute
inequality in (12). As a consequence, one may state that
for t ≥ 0 all the eigenvalues of matrixA are real-negative
for the S-P reference trajectories (regardlessuNr is constant
or time-varying). Now, we must separately consider two
possible cases: when reference velocityuNr is constant,
and when it is time-varying. It is well known that in the
former case the reference joint-anglesβr are constant too,
and the state-matrixA(βr,uNr) becomes time-invariant.
As a consequence, exponential stability of (24) atβ̃ =
0 results directly from (25)-(26) in this case. If velocity
uNr is time-varying, one has to proceed investigation of
properties of matrixA(βr(t),uNr(t)) = A(t) and its time-
derivativeȦ(t) to assess asymptotic stability of LTV system
(24). To this aim, one finds that‖A(βr(t),uNr(t))‖ <
Ā < ∞ ∀ t ≥ 0 by taking into account the forms of



components (21)-(23) under assumption A1. Next, one can
write ȧij(βr,uNr) = a>

βijβ̇r+a>
uiju̇Nr, i, j ∈ {1, . . . , N},

wherea>
βij , ∂aij/∂βr anda>

uij , ∂aij/∂uNr. According
to (21)-(23), assumption A1, and assumed properties of
reference velocityuNr (see Section III) one may conclude

∥

∥a>
βij

∥

∥ ≤ δβij ,
∥

∥a>
uij

∥

∥ ≤ δuij , (27)

where δβij > 0 and δuij > 0 are some finite upper
bounds. Furthermore, by recalling (10) and the form of
matrix Sβ(βr) in (6) one may (conservatively) assess

∥

∥

∥
β̇r

∥

∥

∥
≤

∥

∥

∥

∥

∥

∥

Sβ(βr)

N
∏

j=1

J−1
j (βjr)

∥

∥

∥

∥

∥

∥

‖uNr‖ ≤ δβ ‖uNr‖ ,

where0 < δβ < ∞ under assumption A1. Now, by using
the above inequality together with (27), and condition C2
one can write∀ t ≥ 0 |ȧij(βr(t),uNr(t))| ≤ δβij δβ δ1 +
δuij δ2, and consequently (using a spectral norm ofȦ):

∥

∥

∥
Ȧ(βr(t),uNr(t))

∥

∥

∥
≤ N max

i,j
|ȧij(βr(t),uNr(t))|

≤ N
(

δ̄βij δβ δ1 + δ̄uij δ2
)

(28)

for all t ≥ 0, where δ̄βij = maxi,j(δβij) and δ̄uij =
maxi,j(δuij). By ensuring thatδ1 and δ2 are sufficiently
small (see C2) the right-hand side of (28) can be made
small enough to satisfy the sufficient condition for asymptotic
stability of LTV system (24), see [18]. Since (28) reflects
the sufficient condition (not the necessary one), it may seem
quite conservative from the practical viewpoint. It turns out
however, that the closed-loop stability can be preserved in
practice even for relatively large upper boundsδ1, δ2. �

Remark 2:Due to the lack of differential flatness of nSNT
kinematics, it is not clear in general how to findβr(t)
in other way than by numerical integration of (10). Note,
however, that control law (17) does not utilize reference
joint-angles (9) in any way, thus computation ofβr(t) is
not required for execution of the tracking task.

V. SIMULATION RESULTS

Effectiveness and modularity of the cascaded-like tracking
control law (17) are illustrated for nS3T kinematics by two
simulation examples, SimS and SimV, corresponding to two
alternative control functions, respectively, Samson’s function
Φ

S and VFO functionΦV , used in the outer loop. Both
control functions satisfy, at least locally, properties P1to
P3 under appropriate conditions – for details the reader is
referred to [5] and [6]. Definitions of the control functions
are provided below.

Φ
S =

[

ΦS
ω

ΦS
v

]

,

[

ωNr + k0vNr ẽ3seθ/eθ + k1(uNr)eθ
vNrceθ + k2(uNr)ẽ2

]

,

where ẽ2 = excθN + eysθN and ẽ3 = −exsθN + eycθN ,
k0 > 0 is a positive design parameter, whilek1(uNr) =
k2(uNr) , 2ξ

√

ω2
Nr + k0v2Nr are the positive definite

functions of reference velocityuNr and coefficientξ > 0.

Φ
V =

[

ΦV
ω

ΦV
v

]

,

[

ka(θNa − θN ) + θ̇Na

hxcθN + hysθN

]

,

wherehx = kpex + ẋNr, hy = kpey + ẏNr, ka, kp > 0 are
the design parameters, while

θNa , Atan2c(vNr hy, vNr hx) ∈ R, (29)

is the auxiliary variable, the time-derivative of which takes
the formθ̇Na = (ḣyhx− hyḣx)/(h

2
x+ h2

y) for h2
x + h2

y 6= 0.
Simulation results obtained with control functionsΦS and

Φ
V are provided in Figs. 3 and 4, respectively. The admis-

sible reference trajectory for the guidance segment has been
a numerical solution of (8) for initial conditionq3r(0) =
[π2 − 2 0]> by taking reference velocitiesv3r = σ 0.2m/s,
ω3r = (−0.15σ+0.15 sin0.3t) rad/s withσ = −1 (backward
motion strategy) for SimS, andσ = +1 (forward motion
strategy) for SimV. The following kinematic parameters and
design coefficients have been used:Li = 0.25m, Lhi =
+0.05m for SimS andLhi = −0.05m for SimV, i = 1, 2, 3,
kp = 1, ka = 2, ξ = 1, k0 = 10. Initial configuration of the
vehicle was set toq(0) = [0 0 0 π

2 − 1.5 0]> and has been
highlighted in magenta in Figs. 3-4. To show convergence
of joint-angle errors, reference signals (9) were computedby
numerical integration of (10) for initial conditionβr(0) = 0.

Analyzing the results one can find non-oscillatory motion
character of the guidance segment obtained together with
fast and agile transient maneuvers of the N-trailers, which
ultimately lead to the asymptotic convergence of all the
tracking errors to zero. Time-plots of reference longitudinal
velocities vir , i = 0, 1, 2 clearly indicate that selected
varying-curvature reference trajectories belong to the S-P set
in both cases. Worth noting relatively low control cost for
almost whole control time-horizon (initial peaks ofω0 equal
approximately to106 and 295 rad/s, respectively, have not
been shown for clarity of the plots).

VI. CONCLUSIONS

The cascaded-like control law considered in the paper is
a modular and highly scalable solution to the trajectory-
tracking problem for nSNT kinematics. Modularity comes
from the fact that not a particular one but a whole set of con-
trol functions satisfying P1-P3 can be used in the outer loop
according to the needs of a designer. Scalability means thata
change of a trailers number in a vehicle chain influences only
a number of matrix multiplications required in the inner-loop
transformation. To the author’s best knowledge, the paper
for the first time provides sufficient conditions of asymptotic
tracking with differentially non-flat truly N-trailers fora wide
set of S-P reference trajectories. Adaptation of the method
to the GNT kinematics still remains an open problem.
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