Modular tracking controller for N-trailers with non-zero h itching offsets
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Abstract— The paper presents the concept and stability anal-
ysis of a trajectory-tracking feedback control system fortruly
N-trailer robots equipped with arbitrary number of trailer s
interconnected by the non-zero hitching offsets. Thanks to
application of the cascaded-like control structure the cosidered
solution is modular and highly scalable with respect to a
number of trailers. Formal analysis of the closed-loop sysm
provides sufficient conditions for asymptotic tracking of awhole
set of the so-calledsegment-platooning reference trajectories
with constant as well as time-varying curvature under assurp-
tion of sign-homogeneous hitching of trailers. Generalityof the
concept description together with formal analysis presergd
in the paper fills in some extent the gap which arose in the
literature in the context of trajectory tracking with N-tra ilers of
differentially non-flat kinematics. Simulation examples \alidate
utility and modularity of the control method.

|. INTRODUCTION

(V= 1). Therefore, one may have a strong feeling that the
control approach presented in [4] has not been fully explore
to reveal its actual potential.

The aim of the current paper is to provide generic descrip-
tion and stability analysis of the modular trajectory triack
control system for truly nSNT robots based on the cascaded-
like control concept presented in [4] (see also [13]). The
new description substantially relaxes restrictions ingubis
[4]. In particular, by introducing a set aegment-platooning
reference trajectories (admitting both constant-cumeagund
varying-curvature trajectories) the sufficient conditofor
local asymptotic stability of the closed-loop system are
derived for both backward and forward motion strategies of
a truly N-trailer vehicle with off-axle hitching, preseng
location of the guidance point on a last trailer. Moduladty

We are interested in the trajectory-tracking problem fofh€ concept is illustrated by exemplary simulations apwyi
truly N-trailer robotic vehicles (in short: N-trailers) com- W0 alternative unicycle controllers in the outer loop oéth

prising the unicycle-like tractor andrbitrary number of

cascaded-like control system.

off-axle hitched trailers attached in a chain by the passive ||k |NEMATICS OF N-TRAILERS AND ASSUMPTIONS

rotary joints (see Fig. 1). The N-trailers are practically
important and very interesting hard-to-control systeme d
to specific properties of their kinematics [10], [9], [1]

[7]- Most control solutions for truly N-trailers availabia

the literature concern time-non-critical tasks, i.e. the- s

point stabilization and path-following problem, see eXdL][

[2], [20], [3], [8] and [16]. Although numerous specialized

tracking control laws were devised for tractor-trailer ot
with strictly limited number of trailers (typically foN < 2),

only very limited number of tracking controllers have bee

proposed for truly N-trailers. In this context, one may tkec

for instance solutions proposed in [15], [6], [17] for the

differentially flat Standard N-Trailer (SNT) robots equéab

solely with on-axle hitches (for a notion of diﬁerentialk
flatness the reader is referred to [19]). To the author’s beﬁ
knowledge, the only trajectory tracking control approacl&

elaborated for differentially non-flat truly N-trailers@igped

Configuration of the N-trailer can be uniquely determined

%y a vector (see Fig. 1 for geometrical interpretation)

A

g2 1"

Br ... By On N yn] = [ﬁ} e TV xR*, (1)
an

whereg is the joint-angle vector, whilgy denotes a posture

of a last trailer (called thguidance segmentomprising the

trailer-body orientatiorfy and position coordinatesy, yx

of the guidance pointP. The control input to the vehicle is

&) velocity vectoruy = [wo vo] T € R? wherew, and v, are

the angular and longitudinal velocities of the unicycleli
tractor, respectively.

Kinematic structure of the N-trailer is characterized by tw
'{nds of parameters (see Fig. 1): trailer lengihs> 0 and
itching offsetsL;; € R, i = 1,..., N. We adopt the sign
onvention wherd.,; > 0 if the ith joint is locatedbehind
he wheels-axle of thé — 1)st segment, and;,; < 0 in the

. . t
solely with off-axle hitches — the so-called non-Standard N . . . .
opposite case. From now on we restrict considerations to the

Trailers (nSNT) [7] — have been proposed in [4] by eXIOIOiﬁng}\l—trailers which satisfy the following assumptions:
a cascaded-like control structure. However, the authors In '

[4] limited their considerations (among other restricﬁonAl' vie{l,...,N} Lh}' 7& 0,

imposed) only to backward tracking of constant-curvatur@2: Lhilnj >0 foralli,j e{1,..., N},

reference trajectories (rectilinear and circular onesyiasng A3. Vie{l,.... N} [Lni| < Li if Lp; <0.

omnidirectional kinematics of a tractor. Furthermorepiat  Assumption Al confines considered N-trailers to the nSNT
stability analysis of the closed-loop system provided ih [4fyPe. A2 assumes common signs for all the hitching offsets

was limited only to the case of a tractor-single-trailerteys ~ (all positive or all negative -sign-homogeneous hitchipg
necessity of introducing A2 is dictated by the need of the

jackknife phenomenon avoidance in the proposed control
system as it will be clarified in Section IV. For the first sight
A2 may seem substantially limiting, however most practical
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¢ Y Q0K % whereT;(8;) = I — J:(6:), I € R?*2 is a unit matrix,
tractor . JHB) & Ji(Bi)... Ji(B1), ande” £ [10],d" 20 1].

(unicycle-like)

IIl. CONTROL PROBLEM ANDS-PTRAJECTORIES

trailer 1 Let us complement kinematics (5) with definition of the
system outputy £ gy = Cq, C = [03xn I3x3], being

" the posture of the guidance segment. Assumethmissible
77 P, N ’ output reference trajectory is given

y’l‘(t) = qu(t) = [eNr(t) er(t) er(t)]T € Rg (7)
satisfying unicycle kinematics (2), that is

L,> 0 — trailer length
L,,# 0 - hitching offset

ICRs 5, .
. 1 0 0
y ) gNr = G(qu)uNTa G = 0 CGN 59N ) (8)
2ffer, TR ) " "
5y trailer 2 whereuy, = [wn, vnr]' € R? is a reference velocity

alongy,-(t) such thatoy,.(t), vnr(t), wnr(t), Onr(t) € Loo,
and additionallywt > 0 || un,(t)|| # 0. The latter require-
ment reflects a generalersistent excitatiofPE) condition
y P for trajectory (7). Further, assume that the existence df (7
e — % ; determines the existence of a bounded joint-angles referen
guida

trailer N
(guidance segme

trajectory

point G ﬂr(t) = [ﬁlr(t) R ﬁNT(t)]T € ™ (9)
Xy X X

which, according to (5), has to satisfy an equation of the

) . . ) exogenous system:
Fig. 1. Kinematic structure of the nSNT in a global frarfie®, y<};

ICR; and VSW. denote, respectively, instantaneous center of rotation of . 4 N

the ith vehicle segment and virtual steering wheel of ttiejoint (cf. [1]). Br = Ss(8r)uor (:) S5(8r) H ijl (Bjr) - (10)
Jj=1

structures of N-trailer robots in fact meet this assumptiorh

Limitation A3 is clearly iustified b tical hanical ccording to the distinction proposed above, reference tra
C:JTlls?r;i)r?ts IS clearly justified by practical mechanica jectory (7) determines desired behavior for the systemuwutp

Treati ticul hicl ¢ icvel (posture of the guidance segment), whereas (9) defines a
reafing particuiar vehicle segments as unicycles corresponding desired evolution for tivener configuration
0, =w;, @ =uvcld, vi=v8;, i=0,...,N, (2) ofa vehicle. Introducing the joint-angles error and pastur

- 9 . . error, respectively, as
wherew; = [w; v;]' € R? is a velocity vector of theth

segment, one can find that the following geometrical refatio By .y bo —0n
s i o neighboring Segments [7] B = . £ ﬂT_ﬂa eny = ez £ TNy — TN (11)
_ Ly Cﬂ- LSB B o o
i = Ly == L; ™t o — T.(B\ys N
. [ Lni 85 cB; } wi—y = Ji(Bi)ui-1, (3)

one can formulate a trajectory-tracking control (TTC) prob
where transformation matrid;(3;) is invertible for anys; lem as follows.

under assumption Al, leading to the inverse relation Definition 1 (TTC Problem)For nSNT kinematics (5),
o zf?‘ CB; ﬁsﬁi satisfying assumptions A1-A3, find a feedback control input
tim1 = L;sB; cB; ug = uo(B, ey, -) Which guarantees asymptotic tracking in

Following works [7] and [12] one may recall that kinematics € Sense tha(t) — 0 anden(t) — 0Oz @St — o0,

A T
of the N-trailers can be expressed as a drift-free system wherezx = [2p 0 0_] 1 €0, £, £2, .. '}_'
Remark 1:Introduction of thezero-set0,,, in the above

:| u; =: Jfl(ﬁi)ui. (4)

q= [5] — [ Ss(8) }uO’ (5) definition (which includesd as a special case fqor = 0)
anN Sn(B,qn) has been motivated by a nature of the angular eegor
with sub-matrices Using the zero-set in definition of TTC Problem will enable
CTI‘1(51) consi_derir_wg_ a Wider_clas§ of control Iaws_wh_ich can solve it.
¢ To(82)J1(61) c'JN(B) For simplicity, we will writeey = 02, to indicate thak y
Sy = _ , Sy = |d"JL(B)chy |, s an element of zero-set for some valueiof
. - d"JL(B)N Solution to the above stated TTC Problem will be given in
¢ Tn(Bn)In_1(8) the next section for the set of so-calledgment-platooning

(6) (S-P) reference trajectories. The S-P reference signais ha



been introduced for the first time in [12] in the context of theP2. uy(t) = ®(t) = |en(t)| < oo A en(t) 2 02,7,
path-following task. By analogy, we will call the referenceP3. ®(02,x,t) = un,(t).
trajectory ¢.(t) = [B, (t) qy,(t)]" as S-P if it ensures property P1 claims boundedness of control funcianP2
satisfaction of the following relation means that making velocity (¢) of the guidance segment
VE>0 vioin(t) - vin(t) >0, i=1,....N, (12) modeled by (2) equal to the control functidr(t) leads to
the bounded and asymptotically convergent posture ergor
which means that reference longitudinal velocities of amy t (i.e. P2 reflects efficiency @b when it is directly applied into
neighboring segments are non-zero and have the same signgcycle kinematics). P3 indicates thétis well determined
along a reference trajectory defined by (7)-(8) and (9)-(10also along the reference trajectory (i.e. f¢ = 02,.).
It is easy to find thalg,.(t) = [0 g4,.(t)]" corresponding ~ Worth noting that (17) defines in fact a cascade inter-
to rectilinear output trajectoryy..(t) belongs to set S- connection of the outer-loop tracking controller (dedéicht
P. Further, it can be shown that.(t) = [3 q&,.(t)]T to the guidance segment) representeddy v, ), and the
corresponding to circular output trajectogy.,.(t) is S-P  inner-loop velocity transformation (ILT) being the produc
whenVi € {1,...,N} Bir € (—i, Vi), wheré of matricesJ; '(3;) for i = 1,..., N evaluated at current
Ly Li _ angular configuration of the vehicle chain. A general scheme
~; = arccos (— min {L_i’ L_m}) if Lp; >0, (13) explaining the considered control structure is shown in Eig
. . Proposition 1: Cascaded-like control law (17) with feed-
vi = arceos (|Lnil /Ls)) I Lni <0 (14) ook control function® (e (t), t) possessing properties P1-
For more general reference trajectorigst), corresponding P3 solves the TTC Problem for the S-P reference trajectories
to varying-curvature output trajectoriesy, (t), satisfaction gq.(t) = [B, (t) q4,(t)]" atleast locally in the neighborhood
of (12) can be numerically checked off-line by using formulaf point (3, ex) = (0, 02,,) under the following conditions:
N Cl. Vt > 0 sgnun,(t)) = —sgn(Lp;), i =1,..., N,
[”} @ II 7' Birune, i=0,....N =1, (15) C2.Vt > 0 [lun-()]| < & and [un(t)]] < d2 for
Yir j=it1 ' sufficiently small constantg;,d, > 0 in the case of

which holds along anyy,(t) with reference joint-angles (9) reference trajectories for whichy, (t) # 0.

being a ’'steady-state’ solution of equation (10). Copdition C1 res_tricts a sign of the Iongitudir_\al reference
velocity for the guidance segment by permitting only the
IV. MODULAR TRACKING CONTROLLER backward tracking strategy if all the hitching offsets aosp

A. Cascaded-like control structure for nSNT kinematics itive, or forward tracking if the hitching offsets are negat

The concept of a cascaded-like controller comes frorfy1 justifies introduction of the sign-homogeneity assuopti
inverse relation (4), which upon Al allows one to write A2 formulated in Section Il. Condition C2 claims sufficigntl
slow and smooth reference motion alogg..(¢), although

N . . . . . .
. it concerns only trajectories with time-varying reference
Uo = H Ji(Bj)un- (16)  yelocities.
j=1
The above equation reflects how velodity; of the guidance qu,uNroumoop
segment can be forced by tractor inpu§ in the nSNT g' tracking ¢(eN,t)‘ ILT ;uo(ﬁ@z nSNT |In

controller

kinematics. Because (16) is a purely algebraic mapping, iti gy i | forthe inner-loop '3 kinematics
possible to directly influence motion of the last trailer by t Segment 1 ;
tractor control input. Thus, the natural choice for the tbac { modular (cascaded-like) p £ ey oop ]
control-input results from equation s P,
N
uo(ﬁ, «I)) _ [L;S((g,g))} N H J;l(ﬁj)@(ejw t), (17) Fig. 2. Block scheme of the cascaded-like tracking corgrdibr NSNT.
=t B. Proof of Proposition 1
_ T 2 i
where ® = [®, ®,] € R®is some feedback control  5ne may easily show boundedness of control vector (17),
funqtlon such that_ its direct appllcan_on into unl_cycle &N \which directly results from property P1 and from bound-
matics of the guidance segment (i.e. by taking := ggness of the Frobenius norm of matrik ' (3;) under

®(en,t)) would guarantee asymptotic tracking of the OUtpUElssumption Al
reference trajectoryg . (t). Hence,®(ey, t) represents one | ot 5 examine closed-loop behavior of the guidance
of the tracking control laws available in the literature a”%egment. Upon (3) and (17) one can write
devised to the unicycle (see e.g. [14], [5]). To keep further ) N
considerations general enough, assume only®{aty (¢), t) B 4 B
has some desired properties, namely: unN = ijj(ﬁj) 1:[1 Ji (B ®(ent) = Blen, 1).
PL.Vt>0 || ®(en(t),t)]| < oo, = . o
Thus, one concludes that application of control law (17)
Conditions (13)-(14) are less conservative than thosegsegpin [12]. makes the guidance segment move in a way as it would



be directly controlled by functio®(ey, t). Now, according with non-zero off-diagonal elements
to property P2, one ascertains boundedness of posture error .
~N(t) apd |Fs as;_/mptotlc convergence @,.. The above 4y = [(1 4 LLc’/BW) —Lsf@} H J_l(ﬁjr)
conclusion is valid for both constant-curvature as well as i i
varying-curvature reference trajectories regardlesy tre
of the S-P type or not. [ } J; LB )u (23)
; - - N
Now, we shall consider stability of the joint-angles error 7111 " "

dynamics. Define the outer-loop control difference ) ) _ _
vald fori =1,...,.N—-1,l=14+1,...,N, and with the

B(t) £ un,(t) — (en(t),t). (18)  jth row of matrix B(3,) of the form:
By taking a time-derivative of errg and utilizing (5), (10),
and (18) one obtains the joint-angles error dynamics: b = [(1 + LMLCW —55“] H J; YBr), i=1,...,N.

5 S5(Br) H J (BjrJun Based on the previous conS|derat|ons, we know that pos-
=1 N ture errorey(t) converges tds,, independently of joint-
~ _ ~ ~ angles error3(t). In this context, (20) can be understood
= S5(Br- = B) H J; (Bjr = Bj)(uny — @), (19) as (approximegtémner dynamicf the closed-loop system.
=1 ~ R Upon property P3 and definition (18) it is clear thht= 0
One may easily check thgB = 0, ® = 0) is an equilibrium  for ey = 02,,. Thus, one can treab in (20) as a bounded
of dynamics (19). Closer investigation of equation (19k(seperturbation vanishing in time. As a consequence, one may
the form of matrix Sz in (6)) reveals its upper-triangular analyze stability of dynamics (20) under perfect output-
form, where theith row can be written (after some algebraictracking conditions, that is foey = 0,,, and =

manipulations) as In this case linear dynamics
Bi:fi(BzNa/@TauN’r)+gi(~£v7/ara(i)7 izla"'aNa B:A(BTauNT)B (24)
QN A (5. A3, 21T i i )
where ;" = [5; it ... Bl describes the approximateero-dynamicsof the closed-
loop system. Let us analyze properties of state-matrix
fi=e" I = Ji(Bir)] HJ (Bjr)uny A(B,,un,). Since A has the upper-triangular form, the
J=i eigenvalues\;(A), i = 1,..., N correspond to its diagonal
N elements. According to (21)-(22) and recalling (15) and (4)
- |:I J (BZT)RhZ(ﬂl)} H (ﬂﬂ”) (ﬂ )uNTa one can Writeaii = vi*lr/Lhi = Sgr(vi,lr) |'Ui71r|/Lhi
J=i fori = 1,...,N. Now, for the S-P reference trajectories
- X - we can utilize (12) which, under condition C1, yields for
gi = [I - Ji(ﬂir)Rhi(ﬁi)} H Y(Bjr) R (B))®, i=1,...,N
"~ sgr(ow) [oi 1| _ = [
with matrices ai = gr(ng Yimirl |zz_|lT <-a, (25
~ > ~ 5 hi hi
Ryi(Bi) & o % , Ri(B;) & o Sﬁ . where the bound
—LpisB; ¢ —L;sB; cB;
~ ~ o . Vi—1r
TreatingQ as a state an@ as an input, one can linearize (19) T ety {gg L } >0 (26)
around equilibrium(3 = 0, ® = 0) to yield the approximate . i . ) )
dynamics is strictly positive for S-P trajectories thanks to the acut
L ~ - inequality in (12). As a consequence, one may state that
B =ABr,un:)B+ B(B:)®, (20) for ¢t > 0 all the eigenvalues of matri are real-negative
where for the S-P reference trajectories (regardlegs. is constant
@11 G2 ... GIN b or time-varying). Now, we must separately consider two
0 a2 ... aN by possible cases: when reference veloaity,, is constant,
A(Br,unr) = | . —_— .| BB = . and when it is time-varying. It is well known that in the
' ' ' ' T former case the reference joint-angl@s are constant too,
0 0 ... anwn by and the state-matrixA(3,., uy,) becomes time-invariant.

with diagonal elements As a consequence, exponential stability of (24)&t=
0 results directly from (25)-(26) in this case. If velocity
i = {LLs_hﬁT Cﬁw} H J (Bjr)unry, 1<i< N, wun, is time-varying, one has to proceed investigation of
B j=it1 properties of matrixA (3, (t), un.(t)) = A(t) and its time-
(21) derivative A(t) to assess asymptotic stability of LTV system
_ [LnSBar  CBuw (24). To this aim, one finds that A(3,(t), un,(t <
ANN = [ Lun Lﬁh—w} N (22) A < oo Vt > 0 by taking in'fj)t a((:cofjrzt the(fL)ers of



components (21)-(23) unpler assumption Al. Next, one camhereh, = kye, + Tnpy hy = kpey + Unr, ko, kp > 0 are
write a;; (8r, un,) = a;jﬁr+a;jum, 1,7 €{1,...,N}, the design parameters, while
wherea . £ da;; /08, anda,. £ da;;/duy,. According A

Bij ) T uij ) T 4
to (21)-(23), assumption Al, and assumed properties of Ona = ABN2C(oNy hy, Unr ) € R, (29)
reference velocityu v, (see Section Ill) one may conclude is the auxiliary variable, the time-derivative of which émk

] / / 2 2 2 2
T < 64 T < 6 o7y the formG{Va = (hyhy — hyhz)/(ﬁz + hi) for by 4.-hy # 0.
lagisll < 0sis || @uisll < duss: N @7) Simulation results obtained with control functio®s and

where dg;; > 0 and é,; > 0 are some finite upper &V are provided in Figs. 3 and 4, respectively. The admis-
bounds. Furthermore, by recalling (10) and the form o$jple reference trajectory for the guidance segment has bee

maitrix Sz(8,) in (6) one may (conservatively) assess  a numerical solution of (8) for initial conditions,.(0) =
N [Z —20]" by taking reference velocities;, = o 0.2m/s,

Bl < || S8, T LB | unel| < 65| wnell wsr = (—0.150+0.15sin 0.3¢) rad/s witho = —1 (backward

H sl )j[[1 G | ol | motion strategy) for SimS, and = +1 (forward motion

strategy) for SimV. The following kinematic parameters and
é}lesign coefficients have been usdd: = 0.25m, L;; =
+0.05m for SimS andL;; = —0.05m for SimV,i =1, 2, 3,
kp =1, ky =2, £ =1, ko = 10. Initial configuration of the
vehicle was set tg(0) =[000 Z —1.50]" and has been
highlighted in magenta in Figs. 3-4. To show convergence
H A(B.(1), uNT(t))H < Nmax |a;;(Br(t), unr(t))] of joint-angle errors, reference signals (9) were compbied
1_"3 _ numerical integration of (10) for initial conditiof,-(0) = 0.

<N (5/51'3' 9501 + duij 52) (28) Analyzing the results one can find non-oscillatory motion
for all + > 0, where §5;; = max; ;(ds;;) and §,;; = Character of the guidance segment obtained together with
max; j(6,:;). By ensuring thaty; and &, are sufficiently fast and agile transient maneuvers of the N-trailers, which
small (see C2) the right-hand side of (28) can be maddtimately lead to the asymptotic convergence of all the
small enough to satisfy the sufficient condition for asyntipto tracking errors to zero. Time-plots of reference longitudi
stability of LTV system (24), see [18]. Since (28) reflectsvelocities v;., i = 0,1,2 clearly indicate that selected
the sufficient condition (not the necessary one), it may seewarying-curvature reference trajectories belong to tHe st
quite conservative from the practical viewpoint. It turnst o in both cases. Worth noting relatively low control cost for
however, that the closed-loop stability can be preserved @imost whole control time-horizon (initial peaks ©f equal
practice even for relatively large upper bouridsd,. [ approximately to106 and 295rad/s, respectively, have not
been shown for clarity of the plots).

where0 < g < oo under assumption Al. Now, by using
the above inequality together with (27), and condition C
one can writevVt > 0 |a;; (8, (t), un,(t))| < dpij 0561 +
S4ij 02, and consequently (using a spectral normAjt

Remark 2:Due to the lack of differential flathess of nNSNT
kinematics, it is not clear in general how to fin@.(¢) VI. CONCLUSIONS

in other way than by numerical integration of (10). Note, the cascaded-like control law considered in the paper is
however, that control law (17) does not utilize referencg roqyjar and highly scalable solution to the trajectory-
Jomt-anglles (9) in any way, thus computatlon (1) is tracking problem for nSNT kinematics. Modularity comes
not required for execution of the tracking task. from the fact that not a particular one but a whole set of con-
V. SIMULATION RESULTS trol functions satisfying P1-P3 can be used in the outer loop

Effectiveness and modularity of the cascaded-like tragkin2ccording to the needs of a designer. Scalability meansathat
control law (17) are illustrated for nS3T kinematics by twothange of a trailers number in a vehicle chain influences only
simulation examples, SimS and SimV, corresponding to tw® Number of matrix multiplications required in the inneojo
alternative control functions, respectively, Samsonisction ~ ransformation. To the author's best knowledge, the paper
&S and VFO function®', used in the outer loop. Both for the first time provides sufficient conditions of asymjitot
control functions satisfy, at least locally, properties @1 tracking with differentially non-_ﬂat truly N—trgilers faa wide
P3 under appropriate conditions — for details the reader #t Of S-P reference trajectories. Adaptation of the method
referred to [5] and [6]. Definitions of the control functionst® the GNT kinematics still remains an open problem.
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