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Abstract: Maneuvers performed with tractor-trailers vehi-

cles (N-trailers) belong to the most demanding motion control

tasks in the transportation practice. Very frequent maneuvers

concern the lining-up process of a vehicle chain, usually as

a preliminary stage which prepares the system to subsequent

parking/docking maneuvers. The most common lining-up con-

trol approach results from utilization of the open-loop asymp-

totic stability of N-trailer joint-angle dynamics in the forward

motion. However, in case of long trailers this approach ap-

pears very inefficient especially if the available motion space is

substantially limited. By using the triangular forms of joint-

angle dynamics the problem of lining-up control for N-trailers

is analyzed in the paper by considering two alternative strate-

gies: active lining-up (feedback control) and passive lining-

up (open-loop control). The two strategies are compared in

the context of their practical effectiveness, and how the effec-

tiveness depends on kinematic parameters of the trailers and

their interconnections. It is revealed why the active strategy

can be much more efficient in most practical cases. Theoret-

ical considerations are validated by results of numerical sim-

ulations and experiments conducted with a laboratory-scale

three-trailer robotic vehicle.

Keywords: N-trailer vehicles, off-axle hitching, on-axle hitch-

ing, feedback control, open-loop control, triangular forms

1 Introduction

N-trailers are the most popular articulated vehicles of the
ground transportation. They consist of an active tra-
ctor equipped with passive trailers [22] connected in series
through one of possible hitching types: on-axle or off-
axle. N-trailers possess highly nonlinear kinematics with
several specific properties (like nonholonomy and under-
actuation, structural in-joint-instability during backward
motion, and non-minimum-phase property of joint-angle
dynamics [17]) which make them especially unintuitive
and difficult systems to manual control. N-trailer vehicles
can be divided into three categories: standard N-trailers
(SNT, see [9], [10]) where all the trailers are hitched ex-
actly at a mid-point of a preceding wheels axle (on-axle
hitching), non-standard N-trailers (nSNT, cf. [16]) where
all the trailers are hitched off the preceding wheels axle
(off-axle hitching), and general N-trailers (GNT, see [1])
characterized by combined on-axle and off-axle types of
hitching for particular trailers. In the literature one can
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find papers which treat the classical motion control prob-
lems for different types of N-trailer vehicles (see e.g. [2],
[11], [12], [24], [4], [16], [6], [22]). Especially numerous
studies can be found for vehicles with strictly limited num-
ber of trailers – see e.g. [25], [21], [7], [28], [13], [5], [3].

In practice, one of the most frequent maneuvers with
N-trailers result from the lining-up process of a vehicle
chain. Proper alignment of the vehicle segments is often a
prerequisite to successfully perform such difficult maneu-
vers like backward docking with trailers. Due to practical
limitations of an available obstacle-free space, the lining-
up process should be usually completed along a reason-
ably short distance which a distinguished vehicle segment1

has to pass. The common approach to the vehicle lining-
up control is to utilize the open-loop asymptotic-stability
property of the joint-angle dynamics, where the tractor
is driven forward with zero angular velocity until a ve-
hicle lines-up with a prescribed precision. It is in fact a
passive (open-loop) control strategy, where a tractor seg-
ment does not change a sign of a longitudinal velocity
during the whole control process. This simple approach
can be however unacceptable for vehicles with long trail-
ers, because the lining-up process may involve in this case
excessively long distance of the tractor motion. It turns
out that one can propose an alternative lining-up strategy
which can be more efficient in comparison to the passive
one. In this paper the active lining-up strategy is pro-
posed for N-trailers by using a closed-loop control with
feedback from particular joint angles. Simple conditions
are formulated under which the active strategy becomes
more efficient – it requires much less distance to be passed
by a distinguished segment. Formal analysis and compar-
ison of the two lining-up strategies are presented by using
the lower- and upper-triangular forms [8, 26, 27] of joint-
angle dynamics. Triangular forms allows one to reveal
how a rate of convergence for particular control strategies
depend on parameters of trailers and their interconnec-
tions. The main theoretical results are devised for nSNT
vehicles. It is shown however, that after simple modifi-
cations both control strategies can be practically applied
also into GNT and SNT vehicles.

This work is a substantial extension of the conference
paper [15]. The new results comprise a quantitative stud-
ies and comparison of the lining-up strategies, additional
details of the formal stability analysis, applicability of the

1By the distinguished vehicle segment one understands either a
tractor or a last trailer according to a type of the lining-up strategy
considered (see Section 4).
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active lining-up method into GNT and SNT kinematics,
as well as experimental validation of the active lining-up
strategy. The paper is organized as follows. After de-
scription of the N-trailer kinematics and formulation of
the control problem in Section 2, the triangular forms
of the kinematics are presented in Section 3. Lining-up
strategies are proposed in Section 4 followed by a formal
stability analysis, by quantitative studies, and by appli-
cability extensions in Section 5. Numerical and experi-
mental validation is a topic of Section 6. The paper is
concluded in Section 7.

2 N-trailer kinematics and problem for-

mulation

2.1 Derivation of N-trailer kinematics

Kinematics of the N-trailer vehicle can be derived upon
the interconnected-body chain presented in Fig. 1, where
the vehicle configuration variables have been defined. The
N-trailer consists of a differentially-driven tractor (the
only active segment numbered by zero) and a number ofN
trailers (numbered from 1 toN) interconnected by passive
rotary joints. The length of an i-th trailer, i = 1, . . . , N , is
denoted by parameter Li > 0. Every i-th joint is located
on a preceding segment in some distance from a wheels
axle called the hitching offset Lhi. In general, hitching off-
sets can be either non-zero (off-axle hitching) or equal to
zero (on-axle hitching). Let us assume a positive value of
parameter Lhi if the i-th joint is located behind a preced-
ing wheels axle; consequently, Lhi is treated as negative if
the i-th joint is situated in front of the preceding wheels
axle. One defines two control inputs of the vehicle: ω0

(angular tractor velocity), and v0 (longitudinal velocity
of the mid-point of a tractor wheels axle). A kinematic
model of the N-trailer will be derived in the sequel for a
general case without any assumption on the hitching type
of trailers (off- or on-axle).

Configuration of the N-trailer can be uniquely deter-
mined by the following N + 3 independent variables:

q , [β1 . . . βN θN xN yN ]⊤ =

[
β

qN

]

, (1)

where β = [β1 . . . βN ] ∈ R
N is a vector of joint angles,

and qN = [θN xN yN ]⊤ ∈ R
3 is a posture of the last ve-

hicle segment (orientation angle and position coordinates
of point P , respectively, depicted in Fig. 1).

According to Fig. 1, and under assumption of the
rolling-without-skidding motion for each of the vehicle
wheels, one may treat every i-th vehicle segment (i =
0, 1, . . . , N) as the unicycle2

θ̇i = ωi, ẋi = vicθi, ẏi = visθi (2)

with virtual inputs ωi and vi being the angular and longi-
tudinal velocities of the i-th segment, respectively. Note

2From now on the more compact notation will be used: sα ≡
sinα, cα ≡ cosα.

Figure 1: Kinematic chain of the N-trailer with definition of configura-
tion variables, control inputs, and vehicle parameters (positive hitching
offsets Lhi are denoted)

that by taking i = 0 in (2) one obtains the tractor kine-
matics with only physically available control inputs ω0, v0.
Defining the velocity vector

ui ,
[
ωi vi

]⊤
∈ R

2 (3)

one can formulate a simple formula relating velocities of
any two consecutive interconnected segments in a vehicle
chain

ui = Ji(βi)ui−1, i = 1, . . . , N, (4)

where

Ji(βi) =

[
−Lhi

Li
cβi

1
Li
sβi

Lhi sβi cβi

]

(5)

is the velocity transformation matrix. Using equation (4)
one obtains the following velocity propagation formula
relating velocity vector ui of any i-th segment (i =
1, . . . , N) with tractor control input u0 = [ω0 v0]

⊤:

ui =

1∏

j=i

Jj(βj)u0 (6)

= Ji(βi)Ji−1(βi−1) . . .J1(β1)u0.

Additional kinematic relation results from definition of
the i-th joint angle βi , θi−1− θi (cf. Fig. 1) which, after
its time-differentiation and utilization of Eq. (2), yields

β̇i = ωi−1 − ωi. (7)

Now, by using definition (3) and combining (2), (6), and
(7) one can formulate kinematics of the N-trailer vehicle
in a closed form as a driftless system with control input
u0 = [ω0 v0]

⊤

q̇ =

[

β̇

q̇N

]

=

[
Sβ(β)

SN (β, qN )

]

u0 = S(q)u0. (8)
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System (8) can be decomposed, respectively, into the
joint-angle subsystem (β-subsystem) and the posture sub-
system (qN -subsystem)

β̇ = Sβ(β)u0, (9)

q̇N = SN (β, qN )u0, (10)

where

Sβ(β) =












a⊤(I − J1(β1))
...

a⊤(I − Ji(βi))
∏1

j=i−1 Jj(βj)
...

a⊤(I − JN (βN ))
∏1

j=N−1 Jj(βj)












, (11)

with I ∈ R
2×2 being a unit matrix, and

SN (β, qN ) =






a⊤
∏1

j=N Jj(βj)

d⊤
∏1

j=N Jj(βj)cθN
d⊤
∏1

j=N Jj(βj)sθN




 (12)

with a⊤ , [1 0] and d⊤ , [0 1]. Kinematic model rep-
resented by (8) remains valid regardless what types of
hitching have been used in a vehicle (it admits Lhi = 0 as
well as Lhi 6= 0). Thus, equation (8) describes kinematics
of all the N-trailers (SNT, nSNT, and GNT) in a unified
manner.

In the special case of nSNT vehicles, where all the hitch-
ing offsets Lhi are non-zero, it is possible to find the in-
verse relation to (4) in the form

ui−1 = J−1
i (βi)ui, i = 1, . . . , N, (13)

where the inverse matrix

J−1
i (βi) =

[
− Li

Lhi
cβi

1
Lhi

sβi

Li sβi cβi

]

(14)

is always well determined if Lhi 6= 0. By using equa-
tion (13) one can simply derive the velocity propagation
formula relating velocity vector ui−1 of any (i−1)-st seg-
ment with velocity vector uN = [ωN vN ]⊤ of the last
trailer:

ui−1 =

N∏

j=i

J−1
j (βj)uN (15)

= J−1
i (βi)J

−1
i+1(βi+1) . . .J

−1
N (βN )uN .

Propagation formula (15) will play a key role in the active
lining-up control strategy proposed in Section 4.1.

2.2 Control problem formulation

Before stating the control objective let us formulate two
assumptions which will restrict the types of considered
N-trailers described by (8):

A1. all the hitching offsets in kinematics (8) are nonzero:
∀ i Lhi 6= 0,

A2. all the nonzero hitching offsets in kinematics (8) have
a common sign reflected by σ ∈ {−1,+1}, where

σ , sgn(Lhi) = sgn(Lhi−1), i = 2, . . . , N. (16)

Assumption A1 limits a set of N-trailers to the nSNT
class, for which the inverse matrix (14) and propagation
formula (15) are well determined and bounded. Assump-
tion A2 defines the homogeneous hitching requirement,
which concerns only the signs of the hitching offsets – it
does not preclude different absolute values of particular
offsets. Assumption A2 is crucial for the active lining-up
strategy considered in the paper – except for a some spe-
cial case (see Section 5.2) it cannot be repealed. On the
other hand, it will be shown in Section 5 that assump-
tion A1 is much less stringent allowing one to apply the
lining-up methods also into the GNT and SNT vehicles.
The control objective considered in the paper can be

formulated as follows.

Problem 1 (Control objective) For the β-subsystem
(9) of N-trailer kinematics (8) satisfying assumptions A1-
A2 find a bounded control function u0(·) which, after its
application into (8), guarantees that for all initial con-
ditions ‖β(0)‖ sufficiently close to zero the joint-angle
dynamics (9) is locally stable and

∀ t ≥ T ‖β(t)‖ ≤ ǫ, (17)

where ǫ ≥ 0 is a prescribed constant, and T ∈ [0,∞) is
the lining-up time-horizon.

The above control task admits two kinds of local stabil-
ity: practical stability for ǫ > 0, T < ∞, and asymptotic
stability for ǫ = 0 and T ≤ ∞.
Since one considers the vehicle lining-up problem, the

β-subsystem represented by (9) is of a particular inter-
est. Time-evolution of the posture subsystem (10) has
a secondary meaning. However from a practical stand-
point one should expect acceptable behavior also for qN -
subsystem being a part of a whole vehicle configuration.
This issue will be commented on in Section 4.

3 Triangular forms of joint-angle sybsys-

tem

In order to solve Problem 1 let us first express the joint-
angle subsystem (9) in the lower- and upper-triangular
normal forms.

3.1 Lower-triangular form with input u0

Recalling the terms used in model (9) with matrix (11),
let us introduce the auxiliary matrix

Fi(βi) , I − Ji(βi) =

[
1 + Lhi

Li
cβi − 1

Li
sβi

−Lhi sβi 1− cβi

]

(18)

with Ji(βi) defined by (5). It can be easily found that
subsystem (9) can be expressed in the special normal form
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with input u0 as follows:

β̇1 = f⊤
1 (β1)u0

β̇2 = f⊤
2 (β1, β2)u0

... (19)

β̇N−1 = f⊤
N−1(β1, β2, β3, . . . , βN−1)u0

β̇N = f⊤
N (β1, β2, β3, . . . , βN−1, βN )u0,

where

f⊤
1 (β1) = a⊤F1(β1) =

[

1 + Lh1cβ1

L1

−sβ1

L1

]

, (20)

and for i = 2, . . . , N

f⊤
i (β1, . . . , βi) = a⊤Fi(βi)

1∏

j=i−1

Jj(βj) (21)

=
[

1 + Lhicβi

Li

−sβi

Li

]

JF (β1, . . . , βi−1)

with JF (β1, . . . , βi−1) ,
∏1

j=i−1 Jj(βj). The set of
equations (19) represents the joint-angle dynamics in the
lower-triangular form3 [8,26], where the i-th equation de-
pends on the i-th joint angle and on all the preceding ones
with indexes 1, . . . , i− 1, while it does not depend on any
variables with indexes greater than i. In this way one can
treat all the terms related to the variables with smaller
indexes appearing on the right-hand side of the i-th equa-
tion as external disturbances to the nominal dynamics
β̇i = f̃⊤

i (βi)u0 dependent only on βi and input u0. Note
that the above lower-triangular form includes control in-
put u0 which is directly available in the tractor.

3.2 Upper-triangular form with input uN

In order to obtain an upper-triangular form one has to
redefine the control input by replacing u0 used in (9) with
velocity vector uN = [ωN vN ]⊤ treated as a virtual control
input. It is worth to emphasize that although uN cannot
be directly manipulated, thus at the first look the above
proposition could seem impractical, it can be indirectly
(but precisely and instantaneously4) forced with tractor
input u0 by using relation (15) for i = 1:

u0(β) =

N∏

j=1

J−1
j (βj)uN . (22)

Satisfaction of assumption A1 guarantees invertability
of matrices Jj(βj) making (22) well determined for all
β ∈ R

N . Since (22) is an algebraic transformation, one
may treat uN as an alternative input to the joint-angle
subsystem. Introducing the auxiliary matrix

Bi(βi) , J−1
i (βi)− I =

[
−1− Li

Lhi
cβi

1
Lhi

sβi

Li sβi cβi − 1

]

(23)

3Since equations (19) directly result from the general form of
N-trailer kinematics (8), they remain valid for all the types of N-
trailers (nSNT, GNT and SNT).

4Instantaneous forcing of input u0 relates to the case where one
considers control solely on the kinematic level. In practice, where
the higher-order dynamics of a vehicle reveal, the inevitable actuator
transients appear and must be accepted (see e.g. [20]).

one may rewrite β-subsystem (9) in the upper-triangular
form5 with input uN as follows:

β̇1 = b⊤1 (β1, β2, β3, . . . , βN−1, βN )uN

β̇2 = b⊤2 (β2, β3, . . . , βN−1, βN )uN

... (24)

β̇N−1 = b⊤N−1(βN−1, βN )uN

β̇N = b⊤N (βN )uN ,

where

b⊤N (βN ) = a⊤BN (βN ) =
[

−1− LNcβN

LhN

sβN

LhN

]

, (25)

and for i = 1, . . . , N − 1

b⊤i (βi, . . . , βN ) = a⊤Bi(βi)
N∏

j=i+1

J−1
j (βj) (26)

=
[

−1− Licβi

Lhi

sβi

Lhi

]

JB(βi+1, . . . , βN )

with JB(βi+1, . . . , βN ) ,
∏N

j=i+1 J
−1
j (βj). In this case

the i-th equation depends on the i-th joint angle and on all
the following ones with indexes i+1, . . . , N , while it does
not depend on any variables with indexes smaller than i.
By analogy to the case presented in Section 3.1 one can
treat all the terms with indexes greater than i appearing
on the right-hand side of the i-th equation as external
disturbances to the nominal dynamics β̇i = b̃⊤i (βi)uN

dependent only on βi and input uN .

4 Active and passive lining-up strategies

In this section, two alternative lining-up control strategies
called active lining-up and passive lining-up will be con-
sidered. A main differentiation between active and passive
strategies depends on the way the vehicle control input
u0 is designed. The active strategy will be designed using
the upper-triangular form (24) by appropriate definition
of the virtual control input uN and then by application
of the feedback control function u0 := u0(β) according
to transformation (22). The passive strategy – widely
known from practical experience – will be determined us-
ing an open-loop control policy by direct definition of the
tractor input u0. In the latter case, the lining-up effect
will be a consequence of asymptotic stability of the lower-
triangular joint-angle dynamics (19) in the forward vehicle
motion.

4.1 Active lining-up strategy

Let us define the active lining-up control strategy by the
following proposition.

Proposition 1 (Active lining-up) Assume that N-
trailer kinematics satisfy A1-A2. Then the feedback
control law

u0(β) =

[
ω0(β)
v0(β)

]

,

N∏

j=1

J−1
j (βj)uN (27)

5In the literature called also the feedforward form [27].
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with virtual control input

uN =

[
ωN

vN

]

,

[
0
vN

]

(28)

determined by

vN ,

{
−σ v̄N for ‖β‖ > ǫ

0 for ‖β‖ ≤ ǫ
, 0 < v̄N < ∞ (29)

applied into kinematics (8) solves Problem 1 and will be
called the active lining-up strategy.

Proof 1 First, let us show boundedness of control input
(27) by the following estimation:

‖u0(β)‖
(27)
=

∥
∥
∥
∥
∥
∥

N∏

j=1

J−1
j (βj)uN

∥
∥
∥
∥
∥
∥

≤
N∏

j=1

∥
∥J−1

j (βj)
∥
∥ ‖uN‖

(29)
=

N∏

j=1

Mj v̄N < ∞,

where Mj =

√
(

1 +
L2

j

L2
hj

)

c2βj +
(

1
L2

hj

+ L2
j

)

s2βj is the

Frobenius norm6 of matrix J−1
j (βj), which is bounded un-

der assumption A1.
Second, let us analyze stability of the closed-loop sys-

tem. The right-hand side of definition (27) – cf. with
(22) – is an algebraic mapping well determined for all βi,
i = 1, . . . , N under assumption A1. Thus, application
of control input (27) into joint-angle kinematics (9) is
equivalent to application of virtual control input (28) into
kinematics represented by (24). As a consequence, one
can limit the stability analysis to the system in the upper-
triangular form (24) with input uN defined by (28)-(29).

Let us first consider the case with ǫ = 0 in (29). Recall-
ing (26) and (25) one can rewrite dynamics (24) in the
compact form

β̇i =
[

−(1 + Licβi

Lhi
) sβi

Lhi

]

JB(βi+1, . . . , βN )uN , (30)

β̇N =
[

−(1 + LNcβN

LhN
) sβN

LhN

]

uN , (31)

with equation (30) valid for i = 1, . . . , N − 1, and with

matrix JB(βi+1, . . . , βN ) ,
∏N

j=i+1 J
−1
j (βj) in the form

JB(·) =

[
r11(βi+1, . . . , βN ) r12(βi+1, . . . , βN )
r21(βi+1, . . . , βN ) r22(βi+1, . . . , βN )

]

. (32)

All the matrix entries rlk(βi+1, . . . , βN ) are the bounded
and smooth functions resulting from the product of matri-
ces J−1

j (βj) determined by (14). Application of (28) into
(30) and (31) yields:

β̇i = vN

[

−(1 + Licβi

Lhi
) sβi

Lhi

] [r12(βi+1, . . . , βN )
r22(βi+1, . . . , βN )

]

,

β̇N = vN
sβN

LhN
.

6Generally defined by: ‖A‖ =
√

∑

i,j |aij |
2, see e.g. [23].

By application of (29) with definition (16) into the above
equations and by using the fact that sgn(LhN ) ≡ sgn(Lhi)
for any i (under assumption A2), one obtains the closed-
loop joint-angle dynamics in the form

β̇i =
−v̄N
|Lhi|

sβi

N∏

j=i+1

cβj +∆i(βi, . . . , βN ), (33)

β̇N =
−v̄N
|LhN |

sβN , (34)

where

∆i(βi, . . . , βN ) = δi(βi, . . . , βN ) + di(βi, . . . , βN ), (35)

δi(·) =
v̄N

sgn(Lhi)

(

1 +
Li cβi

Lhi

)

r12(βi+1, . . . , βN ), (36)

di(·) =
−v̄N sβi

|Lhi|
r∗22(βi+1, . . . , βN ). (37)

The term r∗22(βi+1, . . . , βN ) used in (37) results from
equation

r22(βi+1, . . . , βN ) =

N∏

j=i+1

cβj + r∗22(βi+1, . . . , βN ), (38)

which has been obtained by direct inspection of a form
of product

∏N
j=i+1 J

−1
j (βj). It can be easily checked that

β̄ = [β̄1 . . . β̄N ]⊤ with β̄i = 2kπ, k = 0,±1, . . ., i =
1, . . . , N belong to a set of equilibria of dynamics (33)-
(34), since (according to (32), (91), and (38)) r12(β̄) =
0, r∗22(β̄) = 0, and according to (35)-(37) also ∆i(β̄) =
δi(β̄) + di(β̄) = 0 for all i = 1, . . . , N − 1. Naturally,
we are mainly interested in the special equilibrium β̄ =
0. Let us analyze its local stability assuming that β(0) is
sufficiently close to zero.

The form of equation (34) immediately allows conclud-
ing about local asymptotic stability of β̄N = 0, since the
time-derivative of the positive definite function VN (βN ) ,
(1− cβN ) is negative definite

V̇N = −
v̄N

|LhN |
(sβN )2 < 0 (39)

for all βN locally around β̄N = 0.

To show the asymptotic stability for the remaining dy-
namics represented by (33) for i = 1, . . . , N − 1 one esti-
mates the upper bound of ∆i(·) as follows (cf. (35)):

|∆i(·)| ≤ |δi(·)|+ |di(·)| , (40)

where (according to (36)-(37))

|δi(·)| ≤ v̄N

(

1 +
Li

|Lhi|

)

|r12(·)| , (41)

|di(·)| ≤
v̄N
|Lhi|

|r∗22(·)| . (42)

Let us define the positive definite function Vi(βi) , (1 −
cβi). Its time-derivative takes the form (using notion
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cβN
i+1 :=

∏N
j=i+1 cβj for compactness):

V̇i = sβiβ̇i = −
v̄NcβN

i+1

|Lhi|
(sβi)

2 +∆i(·)sβi

≤ −
v̄NcβN

i+1

|Lhi|
(sβi)

2 + |∆i(·)| |sβi|+ (ξ − ξ)(sβi)
2

≤ −

(
v̄NcβN

i+1

|Lhi|
− ξ

)

(sβi)
2 +W (βi, . . . , βN ),

where W (βi, . . . , βN ) = |sβi| (|∆i(βi, . . . , βN )| − ξ |sβi|)
and ξ is some function which has to be designed. To make
the time-derivative V̇i non-positive one proposes to choose

ξ ,
v̄NcβN

i+1

|Lhi|
ξ̄, ξ̄ ∈ (0, 1) (43)

simultaneously requiring that function W (βi, . . . , βN ) is
non-positive. It will be met for |∆i(βi, . . . , βN )| ≤ ξ |sβi|
which, after recalling (41), (42), and (43), leads to the
following stability condition

|sβi| ≥
L̄i |r12(βi+1, . . . , βN )|+ |r∗22(βi+1, . . . , βN )|

ξ̄
∏N

j=i+1 cβj

(44)

with L̄i = (|Lhi| + Li). Let us consider when condition
(44) may be met, and proceed the analysis by going back
from the (N − 1)-st joint to the first one. Let us take
i := N − 1. Since βN (t) → 0 (due to (39)) there exists a
time instant t̄N < ∞ when |βN (t)| < π/2 for all t ≥ t̄N .

Hence,
∏N

j=N−1+1 cβj ≡ cβN is positive for all t ≥ t̄N .
Note also that for i := N − 1 one has

r12(βN ) =
sβN

LhN
, r∗22 ≡ 0, (45)

and r12(βN ) → 0 as βN → 0. Thus, there exists time
instant tN−1 < ∞ such that for all t ≥ tN−1 inequality
(44) is satisfied implying convergence βN−1(t) → 0 for t ≥
tN−1. Let us take i := N − 2. Since βN (t), βN−1(t) → 0,
there exists a time instant t̄N−1 < ∞ when |βN (t)| <
π/2 and |βN−1(t)| < π/2 for all t ≥ t̄N−1. Hence,
∏N

j=N−2+1 cβj ≡ cβN−1cβN is positive for all t ≥ t̄N−1.
Note also that for i := N − 2 one has

r12(βN−1, βN ) =
−LN−1cβN−1sβN

LhN−1LhN
+

sβN−1cβN

LhN−1
, (46)

r∗22(βN−1, βN ) =
LN−1sβN−1sβN

LhN
, (47)

and the above functions tend to zero as βN , βN−1 → 0.
Thus, there exists time instant tN−2 < ∞ such that for all
t ≥ tN−2 inequality (44) is satisfied implying convergence
βN−2(t) → 0 for t ≥ tN−2. . . Proceeding similar reason-
ing for all the remaining indexes i from N − 3 to 1 one
can conclude local asymptotic stability of the equilibrium
β̄ = 0 of joint-angle dynamics represented by (33)-(34):
limt→∞ ‖β(t)‖ = 0. The above result implies that by tak-
ing ǫ > 0 in (29), there exists time instant T < ∞ such
that ‖β(T )‖ ≤ ǫ, and according to (29) the virtual control
input uN (T ) is set to zero making the control input (27)

equal to zero, too. Due to the driftless nature of dynamics
(30)-(31) all the joint angles are frozen for t ≥ T implying
practical stability in the sense that ∀ t ≥ T ‖β(t)‖ ≤ ǫ.

Worth to note that the above conclusions on stability
and convergence remain valid for the whole set of equilib-
ria β̄ with β̄i = 2kπ, k = 0,±1, . . . Convergence toward
β̄i = 2kπ for k 6= 0 implies the vehicle folding effect,
which usually should be avoided due to the presence of
mechanical limitations in vehicle joints. Convergence to
the point β̄ = 0 (instead to β̄ = [2kπ . . . 2kπ]⊤ for k 6= 0)
depends on the initial condition ‖β(0)‖ which should be
sufficiently close to zero to avoid the folding phenomenon.
Furthermore, the forms of functions (45)-(47) indicate
that the values of hitching offsets may also influence ap-
pearance/avoidance of the folding effect. Longer hitch-
ing offsets of the following trailers make a numerator on
the right-hand side of (44) smaller, hence the convergence
condition (44) can be met earlier preventing substantial
divergence of the i-th joint angle during a transient stage.
�

Remark 1 Application of (27)-(29) into (10) forces the
last trailer motion with zero angular velocity and with a
constant longitudinal velocity determined by (29), which
has a constant sign within the whole control time-horizon.
According to definitions (29) and (16) the sign of longi-
tudinal velocity vN depends on the sign of hitching offsets
used in a vehicle (cf. assumption A2). Hence, for σ = 1
one obtains the backward lining-up maneuvers, while for
σ = −1 – the forward lining-up maneuvers. Furthermore,
the form of (28) indicates that the last trailer preserves its
initial orientation: ∀t ≥ 0 θN (t) ≡ θN (0). This side-effect
seems to be beneficial in practical applications, because it
allows anticipating motion of the last segment during the
overall lining-up maneuver, and in a terminal stage also
of the whole articulated vehicle. Obviously, since the pos-
ture qN is controlled in an open loop its evolution is in-
herently non-robust to external disturbances.

4.2 Passive lining-up strategy

The alternative passive lining-up strategy (well known
from the practical experience) can be formulated by the
following proposition.

Proposition 2 (Passive lining-up) The open-loop
control law

u0 ,

[
ω0

v0

]

,

[
0
v0

]

(48)

with

v0 ,

{
v̄0 for ‖β‖ > ǫ
0 for ‖β‖ ≤ ǫ

, 0 < v̄0 < ∞ (49)

applied into kinematics (8) solves Problem 1 and will be
called the passive lining-up strategy.

Proof 2 The analysis will be performed by a strict anal-
ogy to the proof of Proposition 1.

According to the form of definitions (48)-(49) holds
‖u0‖ ≤ v̄0 < ∞, thus the claim about boundedness of
control input u0 is immediate in this case.
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Now, let us analyze stability of system (19) with open-
loop control determined by (48)-(49). Recalling (20) and
(21) one can rewrite dynamics (19) in the compact form

β̇1 =
[

1 + Lh1cβ1

L1

−sβ1

L1

]

u0, (50)

β̇i =
[

1 + Lhicβi

Li

−sβi

Li

]

JF (β1, . . . , βi−1)u0, (51)

with equation (51) valid for i = 2, . . . , N , and with matrix

JF (β1, . . . , βi−1) ,
∏1

j=i−1 Jj(βj) in the form

JF (·) =

[
p11(β1, . . . , βi−1) p12(β1, . . . , βi−1)
p21(β1, . . . , βi−1) p22(β1, . . . , βi−1)

]

. (52)

All the matrix entries plk(β1, . . . , βi−1) are the bounded
and smooth functions resulting from the product of matri-
ces Jj(βj) determined by (5). By application of (48)-(49)
into equations (50)-(51) one obtains the joint-angle dy-
namics in the form

β̇1 =
−v̄0
L1

sβ1 (53)

β̇i =
−v̄0
Li

sβi

1∏

j=i−1

cβj + ∆̃i(β1, . . . , βi), (54)

where

∆̃i(β1, . . . , βi) = δ̃i(β1, . . . , βi) + d̃i(β1, . . . , βi), (55)

δ̃i(·) = v̄0

(

1 +
Lhi cβi

Li

)

p12(β1, . . . , βi−1), (56)

d̃i(·) =
−v̄0 sβi

Li
p∗22(β1, . . . , βi−1). (57)

The term p∗22(β1, . . . , βi−1) used in (57) results from equa-
tion

p22(β1, . . . , βi−1) =
1∏

j=i−1

cβj + p∗22(β1, . . . , βi−1), (58)

which has been obtained by direct inspection of a form
of product

∏1
j=i−1 Jj(βj). It can be easily checked that

β̄ = [β̄1 . . . β̄N ]⊤ with β̄i = 2kπ, k = 0,±1, . . .,
i = 1, . . . , N belong a set of equilibria of open-loop dynam-
ics (53)-(54), since (according to (52), (90), and (58))
p12(β̄) = 0, p∗22(β̄) = 0, and according to (55)-(57) also
∆̃i(β̄) = δ̃i(β̄) + d̃i(β̄) = 0 for all i = 2, . . . , N . Again,
we are mainly interested in equilibrium β̄ = 0. Let us an-
alyze its local stability assuming that β(0) is sufficiently
close to zero.

Due to the form of (53), and since Li > 0 for all i =
1, . . . , N , one can immediately conclude local asymptotic
stability of β̄1 = 0, since the time-derivative of the positive
definite function V1(β1) , (1− cβ1) is negative definite

V̇1 = −
v̄0
L1

(sβ1)
2 < 0 (59)

for all β1 locally around β̄1 = 0.
To analyze stability for dynamics represented by (54)

for i = 2, . . . , N let us estimate the upper bound of ∆̃i(·)
as follows (cf. (55)):

∣
∣
∣∆̃i(·)

∣
∣
∣ ≤

∣
∣
∣δ̃i(·)

∣
∣
∣+
∣
∣
∣d̃i(·)

∣
∣
∣ , (60)

where (according to (56)-(57))

∣
∣
∣δ̃i(·)

∣
∣
∣ ≤ v̄0

(

1 +
|Lhi|

Li

)

|p12(·)| , (61)

∣
∣
∣d̃i(·)

∣
∣
∣ ≤

v̄0
Li

|p∗22(·)| . (62)

Defining the positive definite function Vi(βi) , (1− cβi),
its time-derivative can be assessed as follows (using notion

cβ1
i−1 :=

∏1
j=i−1 cβj for compactness):

V̇i = sβiβ̇i = −
v̄0cβ

1
i−1

Li
(sβi)

2 + ∆̃i(·)sβi

≤ −
v̄0cβ

1
i−1

Li
(sβi)

2 +
∣
∣
∣∆̃i(·)

∣
∣
∣ |sβi|+ (ξ̃ − ξ̃)(sβi)

2

≤ −

(
v̄0cβ

1
i−1

Li
− ξ

)

(sβi)
2 +W (β1, . . . , βi),

where W (β1, . . . , βi) = |sβi|
(∣
∣
∣∆̃i(β1, . . . , βi)

∣
∣
∣− ξ̃ |sβi|

)

and ξ̃ is some function which has to be designed. To make
the time-derivative V̇i non-positive one proposes to choose

ξ̃ ,
v̄0cβ

1
i−1

Li
ξ̄, ξ̄ ∈ (0, 1) (63)

simultaneously requiring that function W (β1, . . . , βi) is

non-positive. It will be satisfied for
∣
∣
∣∆̃i(β1, . . . , βi)

∣
∣
∣ ≤

ξ̃ |sβi| which, after recalling (61), (62), and (63), leads to
the following stability condition

|sβi| ≥
L̄i |p12(β1, . . . , βi−1)|+ |p∗22(β1, . . . , βi−1)|

ξ̄
∏1

j=i−1 cβj

(64)

with L̄i = (|Lhi| + Li). Let us consider when condi-
tion (64) can be met, and proceed the analysis from the
second joint toward the last one. Let us take i := 2.
Since β1(t) → 0 (due to (59)) there exists a time in-
stant t̄1 < ∞ when |β1(t)| < π/2 for all t ≥ t̄1. Hence,
∏1

j=2−1 cβj ≡ cβ1 is positive for all t ≥ t̄1. Note also that
for i := 2 one has

p12(β1) =
sβ1

L1
, p∗22 ≡ 0, (65)

and p12(β1) → 0 as β1 → 0. Hence, there exists time
instant t2 < ∞ such that for all t ≥ t2 inequality (64) is
satisfied implying convergence β2(t) → 0 for t ≥ t2. Let
us take i := 3. Since β1(t), β2(t) → 0 there exists a time
instant t̄2 < ∞ when |β1(t)| < π/2 and |β2(t)| < π/2 for

all t ≥ t̄2. Hence,
∏1

j=3−1 cβj ≡ cβ2cβ1 is positive for all
t ≥ t̄2. Furthermore, for i := 3 hold

p12(β1, β2) =
−Lh2sβ1cβ2

L1L2
+

cβ1sβ2

L2
, (66)

p∗22(β1, β2) =
Lh2sβ1sβ2

L1
, (67)

and the above functions tend to zero as β1, β2 → 0. Thus,
there exists time instant t3 < ∞ such that for all t ≥ t3
inequality (64) is satisfied implying convergence β3(t) →
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0 for t ≥ t3. . . Proceeding similar reasoning for all the
remaining indexes i from 4 to N one can conclude local
asymptotic stability of the equilibrium β̄ = 0 of joint-angle
dynamics (53)-(54): limt→∞ ‖β(t)‖ = 0. According to
the above result one can conclude that by taking ǫ > 0 in
(49) there exists time instant T < ∞ such that ‖β(T )‖ ≤
ǫ, and according to (49) the control input u0(T ) is set
to zero. Due to the driftless nature of dynamics (50)-(51)
all the joint angles are frozen for t ≥ T implying practical
stability in the sense that ∀ t ≥ T ‖β(t)‖ ≤ ǫ.

The above conclusions on stability and convergence are
valid for the whole set of equilibria β̄ with β̄i = 2kπ,
k = 0,±1, . . . Similarly as for the active lining-up strategy
convergence toward β̄i = 2kπ for k 6= 0 implies the vehicle
folding effect. Convergence to the point β̄ = 0 (instead
to β̄ = [2kπ . . . 2kπ]⊤ for k 6= 0) depends on the ini-
tial condition ‖β(0)‖ which should be sufficiently close to
zero to avoid the folding phenomenon. According to the
forms of functions (65)-(67) one observes that the lengths
of trailers may also influence appearance/avoidance of the
folding effect, since the longer preceding trailers make a
numerator on the right-hand side of (64) smaller. As a
consequence, the convergence condition (64) can be met
earlier preventing substantial divergence of the i-th joint
angle during a transient stage. �

Remark 2 By recalling the form of (48) it is clear that
the tractor segment preserves its initial orientation, how-
ever this side-effect is inherently non-robust since the tra-
ctor is controlled in the open loop. Furthermore, the sign
of the longitudinal velocity v0 is always non-negative, thus
the passive lining-up maneuvers proposed above are always
performed in the forward strategy. Moreover, in contrast
to the active lining-up control, stability of the closed-loop
system for the passive strategy is not influenced by any
of the hitching offsets. Hence, stability and convergence
results obtained for the passive strategy remain valid for
any type of N-trailer vehicles (nSNT, GNT, and SNT).

5 Quantitative studies and extensions

5.1 Quantitative analysis of joint-angle dynam-
ics

Apart from the nonlinear analysis performed in the previ-
ous section, it is instructive to look at the linearized form
of the joint angle dynamics for the two lining-up strate-
gies.

In the case of the active lining-up strategy the joint-
angle dynamics linearized around equilibrium β̄ = 0 take
the form













β̇1

β̇2

...

β̇i

...

β̇N













=













γ11 γ12 . . . γ1i . . . γ1N
0 γ22 . . . γ2i . . . γ2N
...

...
. . .

... . . .
...

0 0 . . . γii . . . γiN
...

... . . .
...

. . .
...

0 0 . . . 0 . . . γNN













︸ ︷︷ ︸

Γ













β1

β2

...
βi

...
βN













, (68)

where Γ is the upper-triangular state-matrix, and for i =
1, . . . , N and k = i+ 1, . . . , N hold:

γii =
−v̄N
|Lhi|

, (69)

γik = (−1)k−i−1 v̄N
|Lhk|

(

1 +
Li

Lhi

) k−1∏

j=i+1

Lj

Lhj
. (70)

The above result can be obtained by direct computa-
tions based on dynamics (33)-(34) with the help of partial
derivatives presented in Appendix 7.2. The main diagonal

diag(Γ) =

{
−v̄N
|Lh1|

,
−v̄N
|Lh2|

, . . . ,
−v̄N
|LhN |

}

(71)

determines the set of eigenvalues of matrix Γ. All the
eigenvalues are (real) negative which confirms the local
asymptotic stability of the joint-angle dynamics. More-
over, for a selected velocity v̄N the locus of eigenvalues
directly and solely depends on the lengths of hitching off-
sets. As a consequence, the convergence rate of joint an-
gles in the active strategy depends on the longitudinal
speed of the last trailer and inversely proportional on the
lengths of hitching offsets used in a vehicle.
In the case of the passive lining-up strategy the joint-

angle dynamics linearized around equilibrium β̄ = 0 take
the form













β̇1

β̇2

...

β̇i

...

β̇N













=













γ̃11 0 . . . 0 . . . 0
γ̃21 γ̃22 . . . 0 . . . 0
...

...
. . .

... . . .
...

γ̃i1 γ̃i2 . . . γ̃ii . . . 0
...

... . . .
...

. . .
...

γ̃N1 γ̃N2 . . . γ̃Ni . . . γ̃NN













︸ ︷︷ ︸

Γ̃













β1

β2

...
βi

...
βN













(72)
with Γ̃ being the lower-triangular state-matrix where for
i = 1, . . . , N and k = 1, . . . , i− 1

γ̃ii =
−v̄0
Li

, (73)

γ̃ik = (−1)i−k−1 v̄0
Lk

(

1 +
Lhi

Li

) i−1∏

j=k+1

Lhj

Lj
. (74)

The above equations can be obtained by direct computa-
tions based on dynamics (53)-(54) with the help of partial
derivatives presented in Appendix 7.2. The main diagonal

diag(Γ̃) =

{
−v̄0
L1

,
−v̄0
L2

, . . . ,
−v̄0
LN

}

(75)

defines the set of eigenvalues of matrix Γ̃. Also in this case
all the eigenvalues are (real) negative confirming the local
asymptotic stability result claimed in the previous section.
Now, for a selected velocity v̄0 the locus of eigenvalues
directly and solely depends on the lengths of trailers. As
a consequence, the convergence rate of joint angles in the
passive strategy depends on the longitudinal tractor speed
and inversely proportional on the lengths of trailers.
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In practice, where the lining-up maneuvers are executed
under conditions of a limited motion space, the more im-
portant than convergence rate is the convergence distance
which has to be passed to line-up a vehicle chain with the
prescribed precision ǫ. According to the lining-up poli-
cies proposed in the paper one can assess distances which
have to be passed by the distinguished segments for par-
ticular lining-up strategies (the last trailer or the tractor
segment).

For the active lining-up strategy the last joint angle
evolves in time according to the equation (exact solution
of (34))

βN (t) = 2arctan

(

tan
βN (0)

2
· exp

(
−v̄N
|LhN |

t

))

,

valid for βN ∈ [−π, π]. Assuming a constant longitu-
dinal velocity v̄N the distance passed by the last trailer
within time t is sN (t) = sN (0) + v̄N t (from now on one
assumes sN (0) = 0 without lack of generality). At time
t = T , when the norm ‖β(t = T )‖ decreases to the pre-
scribed threshold ǫ, the distance sN (T ) = v̄NT , thus
T = sN (T )/v̄N , and

βN (T ) = 2arctan

(

tan
βN (0)

2
· exp

(
−sN (T )

|LhN |

))

.

According to the above equation one can assess the dis-
tance traveled by the last trailer as

sN (T ) = |LhN | ln

(

tan βN (0)
2

tan βN (T )
2

)

, (76)

which is finite for |βN (0)| < π and ǫ > 0. Note that
distance (76) does not depend on velocity v̄N , but it
proportionally depends on the length of hitching offset
|LhN |. Obviously, the exact value of sN (T ) depends on
the time horizon T which results from initial condition
‖β(0)‖, prescribed precision ǫ, and from the convergence
rate of remaining angles βN−1(t), . . . , β1(t), which in turn
(in view of (71)) depends on the remaining hitching offsets
LhN−1 to Lh1 and on v̄N . However, since the parameter
v̄N appears in all the elements of matrix Γ (cf. (69)-(70))
its effect preserves temporal relations between all the state
variables (the same conclusion results directly from the
driftless nature of original dynamics (24) together with
the form of (28)). Hence, independently on the value of
v̄N the terminal value βN (T ) must be unique (for fixed
initial condition ‖β(0)‖) making the distance (76) invari-
ant with respect to v̄N .

A similar analysis can be performed for the passive
strategy but in this case by using dynamics of the first
joint angle. The exact solution of (53) gives

β1(t) = 2arctan

(

tan
β1(0)

2
· exp

(
−v̄0
L1

t

))

,

which is valid for β1 ∈ [−π, π]. Assuming constant lon-
gitudinal velocity v̄0 and s0(0) = 0, the distance which
is passed by the tractor at time t = T is equal to
s0(T ) = v̄0T , thus T = s0(T )/v̄0, and

β1(T ) = 2arctan

(

tan
β1(0)

2
· exp

(
−s0(T )

L1

))

.

According to the above equation one can assess the dis-
tance traveled by the tractor

s0(T ) = L1 ln

(

tan β1(0)
2

tan β1(T )
2

)

, (77)

which is finite for |β1(0)| < π and ǫ > 0. Note that
distance (77) does not depend on velocity v̄0, but it pro-
portionally depends on the length L1 of the first trailer.
The exact value of s1(T ) depends on the time horizon
T , which results from initial condition ‖β(0)‖, prescribed
precision ǫ, and from the convergence rate of remaining
angles β2(t), . . . , βN (t) which (in view of (75)) depends in
turn on the lengths L2 to LN of the remaining trailers and
on v̄0. Since the parameter v̄0 appears in all the elements
of matrix Γ̃ (cf. (73)-(74)) its effect preserves temporal
relations between all the state variables (the same conclu-
sion results directly from the driftless nature of original
dynamics (19) together with the form of (48)). Hence,
independently on the value of v̄0 the terminal value β1(T )
must be unique (for fixed initial condition ‖β(0)‖) mak-
ing the distance (77) invariant to v̄0.

One may conclude the above quantitative considera-
tions by the following general corollary.

Corollary 1 For the proposed lining-up strategies:

C1. the local convergence rate of particular joint angles
depends proportionally on the longitudinal velocity
applied to the distinguished segment and inversely
proportionally on the vehicle kinematic parameters
(on hitching offsets for the active lining-up, and on
trailer lengths for the passive lining-up),

C2. distances passed by the distinguished segments do not
depend on their longitudinal velocities, but they di-
rectly depend on the vehicle kinematic parameters (on
hitching offsets for the active lining-up, and on trailer
lengths for the passive lining-up).

5.2 Applicability of lining-up strategies into
GNT and SNT vehicles

Lining-up control strategies presented in Section 4 have
been formulated under assumptions A1-A2 (see Sec-
tion 2.2). In fact, only the active lining-up strategy re-
quires satisfaction of assumptions A1-A2, because it uti-
lizes the inverse transformation matrices (14) (well deter-
mined only for non-zero hitching offsets), and the common
sign of hitching offsets in definition of control law (29).
On the other hand, it is well known from practical expe-
rience (cf. Remark 2) that the passive lining-up strategy
is valid for all types of N-trailers (nSNT, GNT, and SNT)
with arbitrary (and possibly different) signs of particular
hitching offsets. Therefore, extensions will be considered
only with respect to the active lining-up strategy.

Let us repeal assumption A1 (still keeping A2). As a
consequence, one admits that some or even all the joints
in a vehicle are of on-axle type. Let us consider the i-th
joint for which Lhi = 0. In this case one proposes two
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different ways of replacing the ill-conditioned inverse re-
lation (13), used then in definition (27), by an alternative
well-determined transformation.

In the first approach one can approximate the transfor-
mation matrix (5) by defining

Ĵi(βi, εi) ,

[
− εi

Li
cβi

1
Li
sβi

εi sβi cβi

]

, εi 6= 0 (78)

where εi is a prescribed sufficiently small non-zero param-
eter. It is clear that Ĵi(βi, εi = 0) ≡ Ji(βi). However, by
approximation (78) the inverse matrix

Ĵ−1
i (βi, εi) =

[
−Li

εi
cβi

1
εi
sβi

Li sβi cβi

]

(79)

is well determined. It allows application of the active
lining-up controller (27)-(29) also to vehicles with on-axle
joints by replacing the unbounded inverse matrices in (27)
with their bounded approximations (79). Since one still
should keep assumption A2, all the parameters ǫi have to
meet relation

∀ i ≥ 1 sgn(ǫi) = σ, (80)

where σ (cf. (16)) determines a common sign of all the
non-zero hitching offsets present in a vehicle (in case of
SNT vehicles, the common sign for all the parameters εi
can be chosen arbitrarily7). Note that a value of param-
eter εi influences sensitivity of the closed loop system to
noises present in measurements of joint angles, because
εi is placed in a denominator of particular elements in
matrix (79). Hence, selection of εi should result from a
compromise between precision of approximation (79) and
noise-sensitivity of a resultant closed-loop system.

The second approach to the ill-conditioned inverse rela-
tion (13) is to replace it with a transformation specialized
for on-axle joints. An exemplary transformation has been
introduced in [14] for N-trailers with on-axle hitching. In
this approach the tractor input u0(β) , u0d(β), where
the desired input u0d(β) results from combination of ve-
locity transformations specialized for particular types of
vehicle joints. Desired control input for the last segment
uNd = [ωNd vNd]

⊤ is determined by definitions (28)-(29).
For every off-axle joint the transformation is determined,
by analogy to (13), as ui−1d = J−1

i (βi)uid. However, for
on-axle joint the ill-conditioned transformation is replaced
with a mapping

ui−1d =

[
ωi−1d

vi−1d

]

= Ψi(βi,uid), (81)

where

Ψi(βi,uid) ,

[
ωid + ki(βid − βi)

−σ |Liωidsβi + vidcβi|

]

, ki > 0, (82)

and

uid =

{
Ψi+1(βi+1,ui+1d) if (i+ 1)-st joint is on-axle,
J−1
i+1(βi+1)ui+1d if (i+ 1)-st joint is off-axle.

7According to the desired motion strategy of a vehicle (back-
ward/forward).

In definition (82) the term

βid , Atan2c (−σ Liωid,−σ vid) ∈ R (83)

is a desired joint-angle, ki is a design coefficient, and
Atan2c (·, ·) : R × R 7→ R is a continuous version of
the four-quadrant inverse tangent function Atan2 (·, ·) :
R × R 7→ [−π, π) (see [18]). In the first row of defini-
tion (82) a simple proportional control law for the i-th
joint angle has been included in the form of component
ki(βid − βi). Application of mapping (81) with a suffi-
ciently high coefficient ki makes angle βi of the on-axle
joint convergent toward βid. Since (83) tends to zero in
time (as a direct consequence of the lining-up effect in
the (i + 1)-st joint) or it is equal to zero for i = N (by
definitions (28)-(29)) the lining-up phenomenon can be
obtained also for the on-axle joint.
Effectiveness of the two alternative approaches deter-

mined by matrix (79) and mapping (81) will be examined
in Section 6.2.
Finally, let us note a special case, where the active

lining-up strategy can be applied despite violation of as-
sumption A2. Suppose a vehicle consists of two sub-chains
of segments, where the first l joints (l < N) have the
non-positive hitching offsets, while the remaining N − l
hitching offsets are arbitrary. Treating the l-th trailer as a
distinguished vehicle segment, one can apply the lining-up
strategy by taking ul instead of uN in (27) and defining
ul according to (28)-(29) with σ = −1. As a consequence,
the forward active lining-up strategy can be forced for the
first sub-chain of segments, allowing the remaining N − l
joint angles terminally tend to zero through the passive
lining-up process (in this case the l-th segment can be
treated as a forward-moving tractor for the second sub-
chain of a vehicle). Of course, all the consequences result-
ing from the active lining-up maneuvers concern in this
case only the first sub-chain of a vehicle.

6 Numerical and experimental valida-

tion

Performance of the proposed lining-up strategies has been
verified with 3-trailer kinematics (N = 3). Simulations
have been conducted for nSNT vehicles (satisfying as-
sumptions A1-A2), while experimental tests have been
conducted for nSNT as well as for GNT and SNT kine-
matics (repealing assumption A1).

6.1 Numerical simulations

Results of two exemplary simulations, S1 and S2, pre-
senting performance of the active lining-up control have
been presented in Figs. 2-3. The X-Y plots illustrate
initial (denoted by q(0)) and final configurations of the
vehicle. In both cases the following initial conditions
and parameters have been selected: βi(0) = (−1)i · π

3 ,
ǫ = 0.001 rad, v̄3 = 0.2m/s. Simulation S1 presents
backward lining-up maneuvers obtained for positive hitch-
ing offsets Lhi = 0.1m and trailer lengths Li = 0.15m
(i = 1, 2, 3). Simulation S2 presents forward lining-up
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Figure 2: S1: simulation results of active lining-up maneuvers for Lhi > 0 (q(0) indicates the initial vehicle configuration highlighted in
magenta)
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Figure 3: S2: simulation results of active lining-up maneuvers for Lhi < 0 (q(0) indicates the initial vehicle configuration highlighted in
magenta)

maneuvers for negative offsets Lhi = −0.05m and trailer
lengths Li = 0.25m. The following distances s3(Ta)
passed by the last trailer, and convergence time-horizons
Ta have been obtained for particular simulations (com-
pared in brackets with corresponding values of s0(Tp)
and Tp, respectively, obtained for passive lining-up ma-
neuvers) – for S1: s3(Ta) = 1.316m (s0(Tp) = 1.828m),
Ta = 6.578 s (Tp = 9.138 s), and for S2: s3(Ta) = 0.704m
(s0(Tp) = 2.602m), Ta = 3.521 s (Tp = 13.01 s). One can
observe that in considered cases effectiveness of the active
lining-up maneuvers is substantially better in comparison
to the passive ones. It is a direct consequence of the pa-
rameter ratio |Lhi| /Li which in the two simulations, S1
and S2, is less than unity.

More quantitative insight can be inferred from the ex-
emplary (but representative) data collected in Table 1,
where effectiveness of active and passive lining-up strate-
gies has been compared as a function of the vehicle pa-
rameter ratio Lhi/Li for Lhi > 0. Particular values in
Table 1 have been obtained using v̄0 = v̄3 = 0.2m/s,
ǫ = 0.001 rad, Li = 0.15m, and taking βi(0) = (−1)i · π

3
(i = 1, 2, 3). Values of cost functionals

J0a ,

∫ Ta

0

‖u0(t)‖
2
dt, J0p ,

∫ Tp

0

‖u0(t)‖
2
dt, (84)

J3a ,

∫ Ta

0

‖u3(t)‖
2
dt, J3p ,

∫ Tp

0

‖u3(t)‖
2
dt, (85)

have been computed, where u0 = [ω0 v0]
⊤ is the tractor

input vector, and u3 = [ω3 v3]
⊤ is a velocity vector of the

last trailer (treated here as a virtual control input for the
active strategy). Functionals (84)-(85) represent the con-
trol costs for particular lining-up strategies related to the
respective distinguished segments (the tractor-segment –
numbered by 0, and the last trailer – numbered by 3).

Upon the data from Table 1 one can formulate sev-
eral practical inferences. First, one observes that the ac-
tive strategy becomes more effective than passive one for

|Lhi|
Li

< 1. Effectiveness means here a shorter distance
which the distinguished segment has to pass during the
lining-up maneuvers. It can be observed by analyzing

the last column of Table 1, where ratio s3(Ta)
s0(Tp)

becomes

less then unity for Lhi

Li
< 1. Slightly nonlinear relation

between the parameter-ratio and distance-ratio has been
illustrated in Figure 4. Second, for Lhi

Li
= 1 one observes
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Figure 4: Quantitative dependence of the distance ratio
s3(Ta)/s0(Tp) on the vehicle parameter ratio |Lhi| /Li obtained for
nSNT kinematics with Li = 0.15m and Lhi > 0 (star marks) and
Lhi < 0 (circle marks), i = 1, 2, 3 (star-mark points taken from Ta-
ble 1); linear and cubic approximations have been computed only upon

star-mark points. Note that in case Lhi < 0 the range for
|Lhi|
Li

≥ 1

seems to be impractical or even mechanically unfeasible, thus it has not
been considered on the plot

the full equivalence between the two strategies which can
be assessed looking at the highlighted row in the table.
In this case not only distances s3(Ta) and s0(Tp) but also
convergence times Ta and Tp are equivalent. Third, one
can find substantial increase in convergence time Ta and
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Table 1: Quantitative comparison of active and passive lining-up maneuvers with respect to the parameter ratio |Lhi| /Li (values obtained for
Li = 0.15m and Lhi > 0, i = 1, 2, 3)

Lhi [m] |Lhi| /Li Ta [s] s3(Ta) [m] J0a J3a Tp [s] s0(Tp) [m] J0p J3p s3(Ta)/s0(Tp)
0.01 0.067 0.850 0.170 4863.0 0.034 8.315 1.663 0.333 0.617 0.102
0.03 0.200 2.262 0.452 222.3 0.090 8.534 1.707 0.341 0.615 0.265
0.05 0.333 3.555 0.711 45.42 0.142 8.728 1.746 0.349 0.623 0.407
0.08 0.533 5.391 1.078 8.318 0.216 8.981 1.796 0.359 0.668 0.600
0.10 0.667 6.577 1.315 3.561 0.263 9.134 1.827 0.365 0.731 0.720
0.12 0.800 7.737 1.547 1.912 0.310 9.275 1.855 0.371 0.835 0.834
0.15 1.000 9.468 1.894 1.095 0.379 9.468 1.894 0.379 1.095 1.000
0.18 1.200 11.16 2.233 0.852 0.447 9.636 1.927 0.385 1.526 1.159
0.20 1.333 12.30 2.460 0.795 0.492 9.739 1.948 0.390 1.934 1.263
0.22 1.467 13.42 2.683 0.773 0.537 9.838 1.968 0.394 2.452 1.363
0.25 1.667 15.10 3.020 0.777 0.604 9.979 1.996 0.399 3.447 1.513
0.27 1.800 16.22 3.244 0.792 0.649 10.07 2.013 0.403 4.258 1.612
0.30 2.000 17.89 3.578 0.825 0.716 10.18 2.037 0.407 5.684 1.757

distance s3(Ta) for increasing hitching offsets Lhi > Li,
while the increase in time Tp and distance s0(Tp) is rather
slight. This tendency stays in agreement with theoreti-
cal linearized models (68)-(70) and (72)-(74), where the
hitching offsets directly affect the convergence rate of the
active lining-up process, while they influence passive ma-
neuvers only by forms of the off-diagonal elements (74).

Finally, it is interesting to analyze the values of cost
functionals. The tractor control cost J0a dramatically in-
creases for very small offsets Lhi. The reason are very
high values of elements of inverse matrices (14) used in
propagation formula (15) – by decreasing Lhi the propa-
gation singularity is approached. As a consequence, one
can observe large values of the tractor angular velocity. In
contrast, the cost of the last-trailer inputs, J3a, changes
only slightly with ratio Lhi/Li indicating smooth behav-
ior of the last segment during the active lining-up process.
On the other hand, for the passive lining-up strategy one
observes substantial increase in the cost J3p for Lhi > Li.
It reveals oscillatory behavior of the last trailer for sub-
stantially long hitching offsets. This effect is probably
a consequence of the non-minimum-phase property of the
N-trailers equipped with off-axle interconnections (oscilla-
tory phenomena related to the non-minimum-phase prop-
erty of N-trailers have been studied in [17]). Graphical il-
lustration of trends of particular cost functionals has been
provided in Fig. 5. Worth to note that functionals J0a
with J3p and J0p with J3a intersect at a symmetry-point
for Lhi

Li
= 1.

Figure 6 validates corollary C2 by showing the invari-
ance of distance s3(T ) (passed by the last trailer during
active lining-up maneuvers) with respect to a longitudinal
speed for three distinct values of v̄3. One observes that
the only differences between the plots result from differ-
ent convergence rates obtained for particular velocities,
but in all cases final distance s3(T ) is preserved. Similar
results can be presented for the passive strategy showing
that distance s0(T ) is independent on velocity v̄0.

The last simulation example explains the locality of
the convergence results proved in Section 4. Three plots
presented in Fig. 7 show convergence of joint-angles for
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Figure 5: Plots of cost functionals (84)-(85) with respect to the pa-
rameter ratio Lhi/Li for values taken from Table 1
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different values of positive hitching offsets in the case
where initial conditions βi(0) are substantially far from
zero-equilibrium (values βi(0) = (−1)i+1 · π

2 , and param-
eters Li = 0.15m have been selected). One can see that
for small hitching offsets the joint-angles can reach val-
ues even close to ±π (like for the first joint in Fig. 7B).
For small hitching offsets (Lhi = 0.05m in Fig. 7C) the
first joint-angle passes value π and converges toward the
next stable equilibrium β̄1 = 2π instead toward the zero-
equilibrium. This phenomenon is called the folding effect
and is rather undesirable in practical applications due
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A: Lhi = 0.15m B: Lhi = 0.07m C: Lhi = 0.05m
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Figure 7: Influence of hitching offset lengths on the convergence of joint-angles in the case where initial conditions are far from zero-equilibrium
(selected values: |βi(0)| =

π
2

and Li = 0.15m, i = 1, 2, 3)

to mechanical limitations usually present in the vehicle
joints. Similar effect can be shown for passive lining-up
maneuvers by choosing Li ≪ Lhi, Lhi > 0, and initial
conditions sufficiently far from the zero-equilibrium.

6.2 Experimental results

The proposed lining-up strategies have been validated
with the laboratory-scale RMP experimental vehicle pre-
sented in Fig. 8. The vehicle consists of a differentially
driven tractor, three trailers of lengths Li = 0.229m, i =
1, 2, 3, and joints with adjustable hitching offsets. Joint-
angles are measured by 14-bit absolute encoders. Kine-
matic parameters of the tractor b = 0.15m, r = 0.0293m
denote the wheel base and the wheel radius, respectively
(cf. Fig. 1). An auxiliary vision system (located out of
the vehicle and mounted above a motion plane) allows
estimating a posture of the last trailer upon a view of a
LED marker attached to the last segment (posture mea-
surements are used only in order to illustrate evolution of
the vehicle configuration, and to verify the orientation in-
variance property for a distinguished segment). A block
scheme presented in Fig. 9 explains a structure of the
control and measurement subsystems implemented on the
experimental testbed. The Velocity Scaling Block (VSB)
denoted in Fig. 9, represents the scaling procedure which
allows one to take into account control input limitations
of the tractor resulting from the maximal admissible an-
gular velocity ωwmax > 0 of the tractor wheels. Denoting

Figure 9: Scheme of the lining-up control system with an external
measurement vision system (control sampling time Tp = 0.01 s)

by u0c = [ω0c v0c]
⊤ the nominal control input computed

according to one of the proposed lining-up control laws,

the scaling procedure is determined by equation

u0s(t) ,
1

s(t)
u0c(t), (86)

where

s(t) , max

{

1;
|ω0Rc(t)|

ωwmax
;
|ω0Lc(t)|

ωwmax

}

≥ 1, (87)

is a strictly positive scaling function, and

[
ω0Rc(t)
ω0Lc(t)

]

=

[
b
2r

1
r

− b
2r

1
r

]

u0c(t)

with b and r being the tractor wheel base and tractor
wheel radius, respectively.
Numerous experiments have been conducted for active

and passive lining-up maneuvers. Four selected sets of
results for the active lining-up strategy are provided in
Figs. 10-13. The results have been obtained by using the
following common values of parameters: v̄3 = 0.05m/s,
ǫ = 0.04 rad, and ωwmax = 3 rad/s. For convenience, an
initial configuration q3(0) of the last trailer was set to
zero in all considered cases.
Experiment E1 illustrates performance for the nSNT

vehicle with positive hitching offsets: Lh1 = 0.032m,
Lh2 = 0.048m, and Lh3 = 0.040m. Upon Fig. 10 one ob-
serves smooth maneuvers with preservation of an initial
orientation for the last trailer (θ3(0) ≈ θ3(Ta)). Lining-
up time-horizon and distance passed by the last segment
have been assessed, respectively, as Ta ≈ 21.05 s, and
s3(Ta) ≈ 0.478m.
Application of the active lining-up strategy into the

GNT and SNT vehicles has been examined for approx-
imation (79) by the next two experiments – E2 and E3.
Experiment E2 shows the lining-up strategy for the

GNT vehicle with Lh1 = Lh3 = 0.0, and Lh2 = 0.048m.
Since the two offsets are equal to zero, approximation
(79) was applied taking ε1 = 0.016m and ε3 = 0.008m.
Fig. 11 illustrates successful maneuvers despite the men-
tioned approximation. However, a slight oscillatory be-
havior of the tractor can be observed in the terminal
part of a control process together with a violation of
the orientation invariance property for the last trailer
(θ3(Ta) ≈ −4.5 deg). Lining-up time-horizon and distance
passed by the last segment have been assessed, respec-
tively, as Ta ≈ 23.11 s, and s3(Ta) ≈ 0.184m (the distance
does not include a small movement along yG axis).
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Figure 8: Experimental RMP 3-trailer robotic vehicle with adjustable hitching offsets
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Figure 10: E1: experimental results of active lining-up maneuvers for nSNT vehicle (q(0) indicates the initial vehicle configuration highlighted
in magenta)
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Figure 11: E2: experimental results of active lining-up maneuvers for GNT vehicle by using approximation (79) (q(0) indicates the initial
vehicle configuration highlighted in magenta)
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Figure 12: E3: experimental results of active lining-up maneuvers for SNT vehicle by using approximation (79) (q(0) indicates the initial vehicle
configuration highlighted in magenta)

In experiment E3, lining-up strategy has been tested
also for the SNT vehicle with Lhi = 0.0, i = 1, 2, 3. In
this case all the hitching offsets were equal to zero, thus
approximation (79) was necessary for all three inverse ma-
trices. Worth to note that either positive or negative ap-
proximating parameters εi were admissible in this case
(however, with a homogeneous sign). The following pa-
rameter values have been selected: ε1 = −0.008m, and
ε2 = ε3 = −0.032m. By selection of negative parameters
one expects active lining-up maneuvers in the forward mo-
tion strategy (cf. (29)). Control performance for SNT ve-
hicle can be assessed upon the plots in Fig. 12. Also in this
case the cost of the approximation is reflected in a slight

drift of the last-trailer orientation (θ3(Ta) ≈ 9.9 deg),
and in less smooth behavior of the tractor. Lining-up
time-horizon and distance passed by the last segment
have been assessed, respectively, as Ta ≈ 14.07 s, and
s3(Ta) ≈ 0.271m (the distance does not include a small
movement along yG axis).

The last example, E4, provides the results of lining-up
maneuvers for the GNT vehicle with utilization of map-
ping (81). In this case the following hitching offsets have
been selected: Lh1 = Lh2 = 0.048m, and Lh3 = 0.0. As
a consequence, mapping (81) was implemented only for
the third joint using coefficient k3 = 10. Analyzing the
plots in Fig. 13 one can find that the control performance
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Figure 13: E4: experimental results of active lining-up maneuvers for GNT vehicle by using modification (81) for the last joint (q(0) indicates
the initial vehicle configuration highlighted in magenta)

obtained in this case is very similar to the results of ex-
periment E1 (cf. Fig. 10) despite the on-axle hitching of
the third trailer. The orientation angle of the last trailer
has been almost preserved after the lining-up maneuvers,
since θ3(Ta) ≈ −0.44 deg. The lining-up time-horizon and
distance passed by the last segment have been assessed,
respectively, as Ta ≈ 21.98 s, and s3(Ta) ≈ 0.337m (the
distance does not include a small movement along yG

axis).

7 Conclusions

In the paper the active and passive lining-up control
strategies for N-trailer robotic vehicles have been consid-
ered and compared. The active lining-up strategy has
been proposed as a highly scalable feedback control law,
in contrast to the conventional passive lining-up maneu-
vers which result from the open-loop control. It has been
revealed that effectiveness of particular lining-up strate-
gies principally depends on the kinematic parameter ra-
tio |Lhi| /Li, while the equivalence between the methods
holds for (|Lhi| /Li) = 1. Furthermore, it was shown that
for the most common case where (|Lhi| /Li) ≪ 1 the ac-
tive lining-up strategy is substantially more effective than
the passive one. The main condition required for success-
ful application of the active strategy, which restricts ap-
plication of the method, is the sign-homogeneous hitch-
ing of all the trailers in a vehicle (the restriction does
not pertain to the passive strategy). The active strategy
has been proposed and analyzed for the nSNT kinemat-
ics. However, after simple modifications devised for the
on-axle joints, applicability of the method has been ex-
tended also for GNT and SNT vehicles. Effectiveness of
the active strategy has been validated by the results of
laboratory experiments. Worth to note that application
of the lining-up methods to vehicles equipped with a tra-
ctor of car-like kinematics is possible by using the control
framework presented in [19].

Appendix

7.1 Product of transformation matrices at equi-
libria

In order to show the forms of a product of transfor-
mation matrices (and their inverses) at the equilibria
β̄ = [β̄1 . . . β̄N ]⊤, β̄i = 2kπ, k = 0,±1, . . . one should

note that (cf. (5) and (14)):

Ji(β̄i) =

[
−Lhi

Li
cβ̄i 0

0 cβ̄i

]

, (88)

J−1
i (β̄i) =

[
− Li

Lhi
cβ̄i 0

0 cβ̄i

]

. (89)

Since the above matrices are diagonal it is evident that:

1∏

j=i

Jj(β̄j) ≡

i∏

j=1

Jj(β̄j) = J1(β̄1)J2(β̄2) . . .Ji(β̄i)

=

[

(−1)i
∏i

j=1
Lhj

Lj
cβ̄j 0

0
∏i

j=1 cβ̄j

]

, (90)

and

N∏

j=i

J−1
j (β̄j) = J−1

i (β̄i)J
−1
i+1(β̄i+1) . . .J

−1
N (β̄N )

=

[

(−1)N−i+1
∏N

j=i
Lj

Lhj
cβ̄j 0

0
∏N

j=i cβ̄j

]

.

(91)

7.2 Partial derivatives of matrices JF (·) and
JB(·)

Let us consider the form of partial derivatives
∂JF (β1,...,βi−1)

∂βk
and ∂JB(βi+1,...,βN )

∂βk
evaluated at equilib-

ria β̄ = [β̄1 . . . β̄N ]⊤, β̄i = 2kπ, k = 0,±1, . . ., where
the product matrices are determined, respectively, by
JF (·) =

∏1
i−1 Jj(βj) and JB(·) =

∏N
i+1 J

−1
j (βj).

Since JF (β1, . . . , βi−1) ,
∏1

j=i−1 Jj(βj) and since
∏1

j=i Jj(β̄j) ≡
∏i

j=1 Jj(β̄j) (because Jj(β̄j) are diagonal

matrices) then (using notation J̄j ≡ Jj(β̄j) for compact-
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ness):

∂JF (·)

∂βk

∣
∣
∣
∣
β=β̄

= J̄i−1 . . . J̄k+1
dJk

dβk
(β̄k)J̄k−1 . . . J̄1

≡ J̄k+1 . . . J̄i−1
dJk

dβk
(β̄k)J̄1 . . . J̄k−1

=

i−1∏

j=k+1

J̄j ·
dJk

dβk
(β̄k) ·

k−1∏

j=1

J̄j

=

i−1∏

j=k+1

J̄j ·

[
0 1

Lk
cβ̄k

Lhkcβ̄k 0

]

·

k−1∏

j=1

J̄j

=







0
∂p12(·)

∂βk

∣
∣
∣
∣
β=β̄

∂p21(·)

∂βk

∣
∣
∣
∣
β=β̄

0







(92)

with

∂p21(·)

∂βk

∣
∣
∣
∣
β=β̄

= (−1)k−1Lhk

i−1∏

j=1

cβ̄j

k−1∏

j=1

Lhj

Lj
, (93)

∂p12(·)

∂βk

∣
∣
∣
∣
β=β̄

= (−1)i−k−1 1

Lk

i−1∏

j=1

cβ̄j

i−1∏

j=k+1

Lhj

Lj
, (94)

where the following formulas have been used:

i−1∏

j=k+1

Jj(β̄j)
(90)
=










(−1)i−k−1

i−1∏

j=k+1

Lhj

Lj
cβ̄j 0

0

i−1∏

j=k+1

cβ̄j










,

k−1∏

j=1

Jj(β̄j)
(90)
=










(−1)k−1

k−1∏

j=1

Lhj

Lj
cβ̄j 0

0
k−1∏

j=1

cβ̄j










.

By analogy, JB(βi+1, . . . , βN ) ,
∏N

j=i+1 J
−1
j (βj) thus

(using notation J̄−1
j ≡ J−1

j (β̄j) for compactness):

∂JB(·)

∂βk

∣
∣
∣
∣
β=β̄

= J̄−1
i+1 . . . J̄

−1
k−1

dJ−1
k

dβk
(β̄k)J̄

−1
k+1 . . . J̄

−1
N

=

k−1∏

j=i+1

J̄−1
j ·

dJ−1
k

dβk
(β̄k) ·

N∏

j=k+1

J̄−1
j

=

k−1∏

j=i+1

J̄−1
j ·

[
0 1

Lhk
cβ̄k

Lkcβ̄k 0

]

·

N∏

j=k+1

J̄−1
j

=







0
∂r12(·)

∂βk

∣
∣
∣
∣
β=β̄

∂r21(·)

∂βk

∣
∣
∣
∣
β=β̄

0







(95)

with

∂r21(·)

∂βk

∣
∣
∣
∣
β=β̄

= (−1)N−kLk

N∏

j=i+1

cβ̄j

N∏

j=k+1

Lj

Lhj
, (96)

∂r12(·)

∂βk

∣
∣
∣
∣
β=β̄

= (−1)k−i−1 1

Lhk

N∏

j=i+1

cβ̄j

k−1∏

j=i+1

Lj

Lhj
, (97)

where the following formulas have been used:

k−1∏

j=i+1

J−1
j (β̄j)

(91)
=










(−1)k−i−1

k−1∏

j=i+1

Lj

Lhj
cβ̄j 0

0
k−1∏

j=i+1

cβ̄j










,

N∏

j=k+1

J−1
j (β̄j)

(91)
=










(−1)N−k

N∏

j=k+1

Lj

Lhj
cβ̄j 0

0

N∏

j=k+1

cβ̄j










.
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