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Abstract. The paper presents the physically motivated derivation of the alter-
native high-velocity steady-state friction models for the mechanical link-drive
rotating system with the mass unevenly distributed around an axis of rotation.
Proposed modeling approach reveals the substantial friction nonlinearities which
are usually not taken into account in the widely accepted high-velocity friction
models in the literature. Friction phenomena arising due to the mass unbalancing
are analyzed for two cases of motion with respect to the gravity vector: perpen-
dicular and parallel.

1 Introduction

Friction is an unavoidable and complicated practical phenomenon present in industrial
drives. Good model of friction is very valuable for control purposes, since it can be used
in model-based control schemes to improve control quality. It is now a frequent control
practice to compensate (at least partially) for friction in feedback or feed-forward path.
Many practical applications and laboratory results confirm its usefulness. The most
serious problems indicated in the literature concern the friction modeling for very low
velocities of motion (in the so-called presliding stage), where such phenomena like
stick-slip, hysteresis or compliant micro-displacements are considered (see the review
articles [1,2]). On the other hand, for sufficiently high velocities (in the so-called sliding
stage) it is frequently assumed, that the friction model takes a linear function form of a
system velocity (the so-called viscous friction). Such a model is often proposed both for
systems with the mass evenly distributed around the rotation axis as well as for systems
with unbalanced inertia. We will show in the sequel that for systems consisting of the
unevenly distributed rotating mass it is in general theoretically not justified modeling
approach. It will be presented that for high velocities the steady-state relation between
velocity and a friction torque can get a third-order progressive polynomial form or a
highly nonlinear position-dependent function. This phenomenon seems to be important
in the case of robot manipulators with revolute joints (especially for ones with direct
drives), for which the mass of particular rotating links usually is not evenly distributed
either due to the design reasons or due to the robot tip load existence.

Different friction models with a nonlinear relation between the generalized friction
force f and the high velocity v were proposed in the literature for the single-drive sys-
tems. Proposed nonlinear models often consider either the degressive character of the
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friction curves by introducing rational powers of velocity [6], the geometry of applica-
tion [8] or the drag friction component proportional to the second power of velocity [4].
However, these propositions usually comes rather from experimental modeling argu-
ments and do not follow the theoretical analysis of the friction phenomena [3, 6, 8].
Moreover, the proposed friction models are applied to many different motion systems
with no consideration of such an important feature as the geometrical mass distribution
of the moving parts. The fact that friction depends, apart from the velocity, also on the
mechanism position, acceleration or the external load has been indicated in some papers
(see [1, 4, 5, 7, 9]), however the theoretical explanation of those problems seems to has
not sufficient reflection in the literature.

The aim of the paper is to derive the alternative high-velocity steady-state friction
models for the drive-link mechanical system where the link mass is not evenly dis-
tributed around the axis of rotation. We will constraint our analysis of friction to the
steady state condition which should be understood hereafter as a constant velocity con-
dition of the link/drive (angular acceleration equal to zero). We try to investigate the
friction phenomena resulted directly from the rotation of the unbalanced link mass. The
analysis will help to claim why and when simpler friction models (like a linear one)
are sufficient and when the more complicated nonlinear friction relations are more ad-
equate. We will formally derive the steady-state friction models for a link-drive system
for two cases (denoted further as C1 and C2), where the gravity vector is perpendicular
(C1) or parallel (C2) to the motion plane.

Fig. 1. Single rotating link with the unbalanced mass M

2 Problem statement

Let us consider the single rotating link with the unbalanced mass M connected by a
reduction gear with a DC motor drive as depicted in Fig. 1. Assuming, that the arma-
ture induction of the motor can be neglected, the equations which describe the system
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dynamics can be formulated as follows:

Jmθ̈m + fm = τm − µτl (1)

τm = ki i =
ki

R
(u − kεθ̇m) (2)

µ
∆
=

θl

θm

=
θ̇l

θ̇m

=
θ̈l

θ̈m

< 1 and τl = Jlθ̈l + fl + G(θl) , (3)

where particular elements have the following physical interpretation: Jm, Jl – mass mo-
ments of a motor and a link around particular axes of rotation, ki, kε – motor constants,
R – motor armature resistance, i – motor armature current, µ – gear ratio, fm, fl – fric-
tion torques in a motor bearings and in a link joint (together with a transmission), G –
gravitational torque, u – motor armature voltage, θm, θl – angular positions of a motor
and a link, τm, τl – input torques of a motor and a link, respectively.

Using eqs.(2)-(3) in eq.(1) leads, after ordering, to the dynamic model of the con-
sidered system expressed on the motor side:

(Jm + µ2Jl)θ̈m + G(θm) + F =
ki

R
u (4)

where

G(θm) = µMgL sin(µθm) (5)

F = fm + µfl +
kikε

R
θ̇m. (6)

Parameter M in eq.(5) denotes the mass of the unbalanced part of a rotating link
mounted in the distance L form the axis of rotation (see Fig. 1). The term g is a norm
of the gravity vector projected on the motion plane. From now on we will treat the term
F from (6) as a resultant friction torque expressed on the motor side.

The problem we will try to solve in the next sections is to derive the formulas for the
steady-state friction term fl included in eq.(6) for the system with unbalanced rotating
mass. It will be shown that the whole term F is a nonlinear function of the motor
velocity θ̇m and additionally in the case C2 (when G 6≡ 0) also a nonlinear function of
the link position θl.

The main concept that we propose comes from the postulate of varying friction
coefficients as the functions of an unbalanced normal force FN acting on the axis of
rotation (compare Fig. 1). The unbalanced force is a result of the rotation of the unbal-
anced link mass and is proportional to the instantaneous centrifugal acceleration. As a
framework model we choose the static friction model structure composed of Coulomb
and viscous friction1 of the general form:

f
∆
= b(FN , ·)θ̇ + c(FN , ·) sgn(θ̇), (7)

where, according to the above postulate, we assume that b(FN , ·), c(FN , ·) are functions
of a norm of the normal force FN exerted on the axis of rotation (note: FN = ‖FN‖).

1 Since we are interested in the friction phenomenon mainly for high velocities, such a model
structure is practically justified. For simplicity we also temporarily assume friction symmetry.
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For the unbalanced mass rotating with a constant velocity θ̇l, the normal force FN , as a
function of the centrifugal acceleration, is proportional to the squared angular velocity
of the rotating link: FN ∝ (θ̇2

l = µ2θ̇2
m). Moreover, in the case C2 (parallel gravity vec-

tor) the resultant instantaneous acceleration of the link (for the constant link velocity)
is a nonlinear combination of centrifugal and gravity terms: FN = FN (θ̇2

m, g). Accord-
ing to mentioned arguments one can not expect that the high-velocity friction model
linear in velocity will be still appropriate in considered cases. However, it is worth to
emphasize that in the case of perfectly evenly distributed rotating mass the classical
high-velocity steady-state friction models remains valid, since all normal forces are
perfectly balanced (their vector sum is equal to zero) and do not dynamically influence
the friction coefficients.

Detailed formulation of the high-velocity friction models for the both cases C1 and
C2 of unbalanced rotating mass will be presented in the next two sections.

3 Friction model for the case C1 – gravity vector perpendicular

If the gravity vector g is perpendicular to the motion plane of the link (Case C1 in
Fig. 1 ⇒ G(θm) ≡ 0 in eq.(5)) the high-velocity steady-state friction phenomenon
results from the action of two forces: the transversal one FT which is constant and
perpendicular to the motion plane (results from the nonzero mass of the link) and the
normal force FN acting along the link as depicted in Fig. 12. Due to the centrifugal
effect the resultant force FN has an effect on the axis of rotation and is a function of
the centrifugal acceleration ac = Lθ̇2

l . For the constant link velocity its norm takes the
following value:

‖FN‖ = FN = M · ac = M · Lθ̇2
l = M · Lµ2θ̇2

m. (8)

According to the physical relation defining the friction force as a product of a friction
coefficient and a normal force of contact (see [1]), we propose the following friction
model (7) written for the link joint:

fl
∆
= (BlNFN + BlT FT )θ̇l + (ClNFN + ClT FT ) sgn(θ̇l) =

(8)
= (BlNMLθ̇2

l + βT )θ̇l + (ClNMLθ̇2
l + γT ) sgn(θ̇l),

where BlN , βT and ClN , γT are constant and positive coefficients. Using the definition
(3) one can rewrite above formula in the final form:

fl(θ̇m) = BlNMLµ3θ̇3
m + ClNMLµ2θ̇2

m sgn(θ̇m) + βT µθ̇m + γT sgn(θ̇m). (9)

The friction model (7) written for the motor bearing can be defined as follows:

fm(θ̇m)
∆
= Bmθ̇m + Cmsgn(θ̇m), (10)

2 For completeness, the tangential force Ft has been also denoted in Fig. 1, but for the steady-
state considered here this term is equal to zero.
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where Bm and Cm are the constant and positive coefficients. Now we can substitute (9)
and (10) in eq. (6) and write the resultant friction torque F = F (θ̇m) for the case C1 as
follows:

F (θ̇m) = F3θ̇
3
m + F2θ̇

2
m + F1θ̇m + F0, (11)

where

F3 = µ4BlNML F2 = µ3ClNML sgn(θ̇m) (12)

F1 = µ2βT + Bm +
kikε

R
F0 = (µγt + Cm) sgn(θ̇m). (13)

If one consider unsymmetrical friction phenomenon for positive and negative angular
velocities, the torque F (θ̇m) has to be defined as:

F (θ̇m) =

{

F+
3 θ̇3

m + F+
2 θ̇2

m + F+
1 θ̇m + F+

0 if θ̇m > 0

F−

3 θ̇3
m + F−

2 θ̇2
m + F−

1 θ̇m + F−

0 if θ̇m < 0,
(14)

where

F+

3 = µ4B+

lNML, F−

3 = µ4B−

lNML

F+

2 = µ3C+

lNML, F−

2 = −µ3C−

lNML

F+

1 = µ2β+

T + B+
m +

kikε

R
, F−

1 = µ2β−

T + B−

m +
kikε

R

F+

0 = µγ+
t + C+

m, F−

0 = −µγ−

t + C−

m.

Equation (11) shows the third-order polynomial relation for the high-velocity friction,
which can reveal the progressive character which is illustrated in Fig. 2. In the figure, the
steady-state velocity-voltage curves have been plotted according to the model described
by (4) and (11) for parameter values and computed friction coefficients presented in Ta-
ble 1. It can be seen that for machines equipped with the gears of high-reduction ratio
(µ � 1) the coefficients F3,F2 and the term µ2βT in F1 are negligibly small and one
can assume that for practically admissible velocity range these components do not con-
tribute substantially the resultant friction torque expressed on the motor side (compare
Fig. 2). Also in the case of evenly distributed rotating mass we have M = 0 and coef-
ficients F3 and F2 vanish not contributing the friction. In all these circumstances one
obtain the classical linear high-velocity friction model. However, for low-reduction ra-
tios µ and even for small unbalanced mass M the effect of polynomial friction relation
is clearly visible on the characteristics in the range of medium and high velocities. We
suppose that this effect is especially emphasized in the case of fast motion for rotating
mass-unbalanced links equipped with the direct drives where we have µ = 1. In this
case the liner model seems to be theoretically unfounded.

4 Friction model for the case C2 – gravity vector parallel

If the link motion plane is parallel to the gravity acceleration vector g, the transversal
force FT can be neglected in the friction analysis. Now all accelerations which con-
tribute the friction act in the same plane and must be geometrically combined. Fig. 3
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Table 1. Parameter values for the theoretical friction model defined by (6), (9), (10) used for
plots in Fig. 2 and obtained coefficients (12)-(13)

Parameter Value Parameter Value
M 0.50 kg g 9.81 m/s2

Ml 0.20 kg Cm 0.0080
L 0.25 m Bm 0.0004
R 1.00 Ω ClN , ClT 0.0800
ki 0.02 Nm/A BlN , BlT 0.0040
ke 0.20 Vs/rev

µ = 1/5 µ = 1/30

F3 = +8.0000 · 10−7 F3 = +6.1728 · 10−10

F2 = ±8.0000 · 10−5 F2 = ±3.7037 · 10−7

F1 = +4.7139 · 10−3 F1 = +4.4087 · 10−3

F0 = ±3.9392 · 10−2 F0 = ±1.3232 · 10−2

−80 −60 −40 −20 0 20 40 60 80
−60

−40

−20
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20

40

60

dθ
m
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u 
[V

]

µ = 1/5

µ = 1/30

Fig. 2. C1: Theoretical polynomial friction model defined by (4) and (11) computed as the steady-
state relation between the motor velocity θ̇m and the motor armature voltage u for two values of
the gear ratio µ

illustrates the situation where two accelerations: gravitational one g and centrifugal one
ac = Fc/M are combined leading to the resultant acceleration a acting on the axis of
rotation due to the constant-velocity motion of the unbalanced mass M . The resultant
force FN which contribute the steady-state friction in the link joint is obtained as

FN = Mlg + Ma, (15)

where a = ac + g, Ml is the mass of the link (without the unbalanced part M ) and

g =

[

0
−g

]

, ac =

[

Lθ̇2
l sin θl

−Lθ̇2
l cos θl

]

⇒ a =

[

Lθ̇2
l sin θl

−Lθ̇2
l cos θl − g

]

in the coordinate frame {x, y} denoted in Fig. 3. In a consequence, the norm of the
normal force FN is velocity and position dependent:

FN (θ̇l, θl) =

√

(ML)2θ̇4
l + 2g(M + Ml)MLθ̇2

l cos θl + (M + Ml)2g2. (16)
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Fig. 3. C2: The link with the unbalanced mass M rotating in the plane of the gravitational accel-
eration g. Note, that for a constant link velocity condition, the tangential acceleration at ≡ 0

Now we define the friction torque in the joint link similarly to the proposition from the
previous section:

fl = bl(FN , ·)θ̇l + cl(FN , ·) sgn(θ̇l)
∆
= BlNFN (θ̇l, θl)θ̇l + ClNFN (θ̇l, θl) sgn(θ̇l),

where BlN and ClN are constant and positive coefficients, but now the normal force
FN = FN (θ̇l, θl) is additionally a nonlinear function of link position according to (16).
Using definition (3) one can express above formula in the terms of motor velocity and
motor position as follows:

fl(θ̇m, θm) = BlNFN (θ̇m, θm)µθ̇m + ClNFN (θ̇m, θm) sgn(θ̇m),

where

FN (θ̇m, θm) =

√

(ML)2µ4θ̇4
m + 2g(M + Ml)MLµ2θ̇2

m cos(µθm) + (M + Ml)2g2.
(17)

Assuming the friction model (10) for the motor bearing we are ready to write the for-
mula describing the resultant friction torque F from eq.(6) for the case C2. We obtain:

F (θ̇m, θm) = F1(θ̇m, θm)θ̇m + F0(θ̇m, θm), (18)

where

F1(θ̇m, θm) = µ2BlNFN (θ̇m, θm) + Bm +
kikε

R
(19)

F0(θ̇m, θm) =
(

µClNFN (θ̇m, θm) + Cm

)

sgn(θ̇m) (20)

with FN (θ̇m, θm) described in (17). For the unsymmetrical friction phenomenon one
has to modify the resultant torque F (θ̇m, θm) as follows:

F (θ̇m, θm) =

{

F+
1 (θ̇m, θm)θ̇m + F+

0 (θ̇m, θm) if θ̇m > 0

F−

1 (θ̇m, θm)θ̇m + F−

0 (θ̇m, θm) if θ̇m < 0,
(21)
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where

F+

1 (θ̇m, θm) = µ2B+

lNFN (θ̇m, θm) + B+
m +

kikε

R

F−

1 (θ̇m, θm) = µ2B−

lN
FN (θ̇m, θm) + B−

m +
kikε

R

F+

0 (θ̇m, θm) = µC+

lNFN (θ̇m, θm) + C+
m

F−

0 (θ̇m, θm) = −µC−

lNFN (θ̇m, θm) − C−

m.

Let us analyze some interesting properties of derived friction model (17)-(20). Note
that the friction nonlinearity results from the nonlinear function FN (θ̇m, θm). Figure 4
illustrates the friction torque (18) as a function of the link angular position θl ∈ (0; 2π]
and the link velocity θ̇l ∈ (0; 8π] [rad/s]. The plot has been obtained for the gear ratio
µ = 1/5 and for the model parameter values included in Table 1.
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Fig. 4. C2: Friction torque (18) as a function of the link angular position θl and the positive link
velocity θ̇l; the global minimum can be seen for θ̇∗

l = 7.41 [rad/s] and θ∗

l = π [rad]

From (16) one can note that FN is a periodic function of the link position θl. It is
clear that for every fixed (and constant) link velocity θ̇l = µθ̇m the normal force takes
the following extremal values:

FNmin =
∣

∣

∣
(M + Ml)g − MLθ̇2

l

∣

∣

∣
for θl = π (22)

FNmax =
∣

∣

∣
(M + Ml)g + MLθ̇2

l

∣

∣

∣
for θl = 0. (23)
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Hence the resultant friction torque (18) also varies along the full link revolution despite
the constant link velocity (see Fig. 4). It is interesting that for the special value of the
link velocity

θ̇∗l =

√

g(Ml + M)

ML

the minimum (22) is equal to zero. In a consequence, for the upper link position the
friction torque (18) results only from the motor friction phenomenon. This situation is
visible in Fig. 4 as a hollow in the surface (global minimum of the friction torque).
Velocity value θ̇∗l corresponds to the special centrifugal acceleration a∗

c = Lθ̇∗2l acting
on the mass M for which the centrifugal force F ∗

c = Ma∗

c compensates the weight
Fg = (Ml + M)g of the whole rotating system (the link with the unbalanced mass, see
Fig. 3). If the link velocity increases over the value θ̇∗l , the centrifugal force overcom-
pensates the system weight for the link position θl = π and in a consequence the value
FNmin becomes greater than zero and continuously increases with velocity (compare
Fig. 4). Detailed plots of the friction torque (18) and the normal force (16) are presented
in Fig. 5. Three intersections along the velocity axis of the friction surface from Fig. 4
there are presented. Note the non-smooth transition of the normal force FN (due to the
absolute value in (22)) for the velocity θ̇∗l = 7.41 [rad/s].
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Fig. 5. C2: Friction torque F (18) and the normal force FN (17) as the functions of the link
velocity θ̇l computed for three values of the link angle θl ∈ {0, π/2, π}

It is worth to note that for two special angular positions of the link, namely for
θl = 0 and θl = π where the normal force takes the extremal values (22)-(23), the
friction torque (18) takes the third-order polynomial form similarly to the friction model
from the case C1. It can be easily derived substituting (22) or (23) into (19)-(20) and
ordering particular terms. Using (23) one gets the following polynomial for the bottom
link position (θl = µθm = 0):

F (θ̇m, θl = 0) = F30θ̇
3
m + F20θ̇

2
m + F10θ̇m + F00, (24)

where

F30 = µ4BlNML, F20 = µ3ClNML sgn(θ̇m),

F10 = µ2BlN (M + Ml)g + Bm +
kikε

R
, F00 = (µClN (M + Ml)g + Cm) sgn(θ̇m).
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The polynomial for the upper link position (θl = π) results from utilizing eq.(22) and
it has the form:

F (θ̇m, θl = π) = F3π θ̇3
m + F2π θ̇2

m + F1π θ̇m + F0π, (25)

where

F3π = −sµ4BlNML, F2π = −sµ3ClNML sgn(θ̇m),

F1π = sµ2BlN (M + Ml)g + Bm +
kikε

R
, F0π = (sµClN (M + Ml)g + Cm) sgn(θ̇m)

and
s

∆
=

{

+1 if ML(µθ̇m)2 < (M + Ml)g

−1 if ML(µθ̇m)2 > (M + Ml)g
.

5 Remarks and future work

In the authors opinion the high-velocity friction modeling issue has not found enough
attention in the literature so far. Simple fact that friction is a function of the normal force
FN , which depends on the varying acceleration of the mass-unbalanced rotating system
was a motivation of considering the high-velocity friction phenomenon ones again. The
derived friction models indicate the substantial nonlinearity in the friction phenomenon
(in the form of progressive functions) which can arise for high constant velocities in
the mass-unbalanced rotating systems. It must be stressed that since our intention was
to focus only on the influence of the unbalanced rotating mass, we have not considered
all the practical frictional effects like for instance the drug friction or the temperature
influence on the friction coefficients. More complete friction analysis should take into
account also these phenomena. It has been shown that for systems with the gears of
low-reduction ratios (especially for direct drives) the derived nonlinear effects can not
be treated as negligible. Moreover, for the case C2 we have shown that the friction
can depend not only on the velocity but also on the instantaneous position of the link.
It is worth to note that for the high-reduction ratios of applied transmissions derived
nonlinear friction models become the widely accepted linear-in-velocity ones.

The authors believe that models proposed in the paper can explain, at least in part,
experimental results concerning the friction effects presented in [3] and [7]. In the near
future the experimental testbed will be prepared which will allow to practically vali-
date theoretical friction models proposed in the paper. The extension of the presented
analysis to the multi-link serial manipulator case is also planned as the future work.
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