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Abstract—Fundamental limitation of the model-inverse feed- which motivated its selection for further consideratioissan

forward control results from instability or non-causality of the independence of a feedforward design process from dynamics
inverse of nonminimum-phase dynamics which cannot be appd of a stabilizing controller.

in practice. To overcome this limitation, the approximateinverse . .
methods have been proposed in the literature. Structures of ~ Vvarious approaches to feedforward control design have been

feedforward controllers proposed so far highly depend on a proposed in the literature, see e.g. [2], [5], [12], [14]0]2
plant model structure. Therefore in general, their implementation  and the review papers [7], [21]. The classical model-ingers
may be inconvenient or troublesome in industrial applicatons. approach, applied in the control system from Fig. 1, employs

In this context, a simple fixed-structure feedforward contol 5 toedforward controlleGr(s) equal to an invers& ! (s) of
law is proposed in this paper in a form of a weighted linear . .
combination of a reference trajectory and its time-derivaives. Plant dynamics. It has been shown in [8] that the feedforward

Design rules for selection of the weights are derived and praded ~control designed in this way improves output-tracking perf
in an explicit (analytical) form. The proposed control law can mance relative to a pure feedback control if a plant-model
be employed to both nonminimum- and minimum-phase LTI yncertainty is sufficiently small (at least over some fretpye

SISO systems. The new method has been compared with classica, , e of interest). The model-inverse strategy, howes,zh
feedforward controllers known from the literature revealing its

advantages and limitations. Results of numerical exampleand

experimental validation tests obtained for an electronic fant have (1)
been reported. yd‘
Index Terms—feedforward control design, trajectory tracking, g o8 : - GFF(S) u
nonminimum-phase dynamics, linear systems g gb g feedforward controller IF
298| Y0 o U, yu y
> G.(s >
[. INTRODUCTION f R( ) G(s)
ET us consider an LTI SISO plant, with inputt) and -1 =
outputy(t), represented by the transfer function
(&) » Y(s) bin8™ + ...+ bis + by B(s) Fig. 1. The 2DOF control system with the plant-inversiondfeeward.
G(s) = = =

. Uls) ~ans™+...tastar  Als) fundamental limitation, sinc€/rr(s) = G~ '(s) is practically
with by # 0. Model (1) covers both stable/unstable andypicable only if the system (1) is minimum-phase, that is
minimum-phase/nonminimum-phase dynamics. The probl&jhen all the roots of numerator polynomial of (1) lie in
under consi(_jeration concerns feedforward control design_ the left-half complex plane [13]. To overcome this limitatj
system (1) in the two-degrees-of-freedom (2DOF) trackingq ajternative general classes of feedforward design oasth
control system. In the literature, one distinguishes two 3l5ye been proposed in the literature for the nonminimum-
ternative 2DOF control structures: with th@ant-inversion phase plants: preview-based methods and approximateséve
feedforward and with thelosed-loop-inversiofieedforward. yethods. Control laws from the former class (see e.g. [26],
In the paper, an atte_ntio_n will be mostly paid on the_ formetw]’ and [15]) employ the preview information about a
structure presented in Fig. 1, wheyg denotes a sufficiently reference trajectory which must be available sufficientiyhe
smooth reference trajector§z(s) is a stabilizing controller, yrior to its application in the control system. Methods from
ande is a tracking error the second class try to approximate the unstable exactsaver
e(t) 2 ya(t) — y(t). @ of the plant model by some stablt_e transfer func_:tion. I_n this
paper, we are mostly interested in the approximate-inverse
The plant-inversion feedforward has several importanppromethods which are relatively simple and require only curren
erties discussed e.g. in [7] and has been widely utilized Values of the reference signal and its time-derivative (se
industrial applications, [8], [21]. One particular advage of [4] and [7], [21]). In this class, three classical concepaseh
the control system structure with plant-inversion feedfand, been proposed: the nonminimum-phase zero ignore (NZI), the
o _ _ zero-magnitude error (ZME), and the zero-phase error (ZPE)
The author is with the Chair of Control and Systems EngimeerPoznan . . e .
University of Technology (PUT), Piotrowo 3a, 60-965 PaznRoland, e-mail: Methods (various extensions or modifications of them can be
maciej.michalek@put.poznan.pl found in [6], [11], [19], [23], [24]). Origins of the classat
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methods naturally come from the frequency domain analysis. with v + A = m, represent polynomials with roots
As a consequence, a structure and effectiveness of thécalass  having solely strictly positive or strictly negative real

approximate-inverse feedforward controllers generadigehd parts, respectively (no roots on the imaginary axis).
on a particular strupture and quantitative charactesistita Pperfect knowledge of the plant dynamics assumed in Al
plant transfer function [4]. indicates that we address a nominal feedforward control

The aim of this work is to provide simple rules of feedfordesign, where any parametric uncertainty is not considered
ward control design for dynamics (1) in a form of the lineapssumption A2 does not reduce generality of model (1). In
combination of a reference trajectory and its successive-ti the case wher3(0) # 1, one can simply divide numerator
derivatives and denominator of (1) by, to meet A2.

upp(t) épuyg“) ) +... +p1yfil)(t) + poyalt), (3) Remark 1:In a more general case, the plant dynamics is

usually described by the transfer function

wherep € N andp,,...,po € R are treated as design pa-
rameters. Selection of coefficiengs, ..., po proposed in the G(s) = D(s) exp(—sTy), @)
paper takes into account not only poles of the plant dynamics C(s)

but also allows compensating for the influence of a timewelﬁ,herec(s) = cp 8"+ .. .4 c154co, D(8) = dppys™ ..+
and plant zeros, regardless of their location in the open lef, s 1+ ¢, degC(Cs) = n. > deg D(s) = mg, while Ty > 0

or right-half complex plane. The main reason for proposingpresents a time-delay. The required rational form ofsfien
the fixed-structure feedforward (3) comes from its simpfici fynction (1) can be obtained in this case by approximatireg th

especially in the context of its practical implementation.  time-delay term of (7) with one of three most populaorder
The design approach presented in this paper is a frequengtional approximations:

domain generalization of the idea based on a simple time-
domain analysis of plant dynamics presented in the prelimi- ¢xp,(—s7;) ~ ’
nary work [9]. For the sake of conciseness, the time-domain Qs’+...qus+1

1 Ti
7.

analysis is not continued here. Instead, the feedforwasyde - v (T

rules are derived completely in a frequency domain, which exp(=sTo) 1+ qis+ . +as’, 6= il ©)
. T , 7 1 — Ths /o)

provides more insight into benefits and limitations of thevne xp(—sTh) ~ ( 0s/2v) veN, (10)

method, and permits its direct comparison with the clasica ¢ (1+Tos/2v)¥’

fei.:jfolr_war_d mefthogs I;nown from fthe d]Iclteratu(;e_. where the latter one is called theorder Padé approximation.
pplication of a fixed-structure feedforward Is not a COMry g affact of the above approximation on resultant control

pletely new i_dea. A feedforward control law similar to (3)performance achievable with feedforward control law (3] wi
for the special case ofi = 4 has been proposed for the e illustrated in Section V-A

class of electromechanical servo systems in [25] (see also _ .
references cited therein). The method presented in thisrpap For the purpose of further analysis let us define three
generalizes the concept of a fixed-structure feedforward @baracteristic transfer functions:

a wider class of systems represented by (1), and provides a2 Ur(s)  Ls"+...+lhs+ly  L(s)
explicit analytical equations for the coefficients of a hne r(s) = E(s)  Mys*+...+ Mys+ M, M(s)’
combination in (3). Furthermore, the proposed method has  Uee(s) @)

been qualitatively and quantitatively compared with thelNZ Grr(s) = Yals) P(s) = pus" + ...+ p1s+po, (11)

ZME, and ZPE control laws revealing conditions under which
the new method outperforms the classical ones in the contexG g (s) £
of obtainable ultimate output-tracking performance.

E(s) 1—G(s)Gre(s)
Yd(S) a 1+ G(S)GR(S) (12)
— S(s)[1 — G(s)Gre(s)] = S(s)T(s) (13)

[I. SYSTEM DESCRIPTION AND ASSUMPTIONS which represent, respectively, dynamics of the stabijzion-

We formulate two essential assumptions related to systdfller. the fixed-structure feedforward controller far> 7,
(1) required for further considerations. and dynamics of therror transfer functionS(s) introduced in

AL, Dynamics (1) is at least propen (> m), is perfectly (13) is a closed-loop sensitivity function, whilds) represents

X . the feedforward mismatclransfer function such that
known, and the numerator and denominator polynomials
A

of (1) do not have any common factors. [(s)=0 < Gee(s) &G (s). (14)
A2. Polynomial B(s) is such thatB(0) = by = 1, and can
be factorized as follows

Satisfaction of (14) guarantees a zero steady-state trgcki
error in a response to reference trajectgyyt). Thus, relation
B(s) = BP(s)B"(s), (4) (14) reflects a nominal case of feedforward control design,
which is practically feasible itz~!(s) is stable and causal.
where It is well known that (14) is not acceptable when the transfer
Dl function G(s) is nonminimum-phase.
Br(s) = BWSA toothstl ysm ) Let us complement assumptions A1-A2 with two additional
B'(s)=ans"+...+as+ 1, A<m, (6) prerequisites related to the control system presentedgniFi
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A3. Gr(s) is a stabilizing controller for system (1) guaranteewhere
ing stability of the closed-loop system from Fig. 1 with .
urr = 0, that is, all the poles of error transfer function W(s) = wppms"™™ + .. 4 wn g™, (17)
(12) are located in the open left-half complex plane. W(s) = wns™ 4 ... +wis + wo, (18)
A4. The reference trajectory,(t) : R>o — R is a bounded
continuous-time function of clas€* with sufficiently ~with coefficients
high © > 1. Moreover,y,(t) as well as its successive
time-derivativesy" (1), ..., y{" (t) are perfectly known "0 =0~ bopo, ‘
at any current time instarit> 0. J ,
Assumption A3 permits the plant dynamics to be only %7 =% — bopj = Zbipj—i’ jedl,...,p+mj, (20)
marginally stable or even unstable. Assumption A4 ensures =t

(19)

that time—derivative@gl)(t),...7yfi“)(t) exist, are bounded, taking a; = 0 for j > n, b, = 0 for ¢ > m, and
and all the reference signalg(t),y"(t),...,y%)(t) are pj—i = 0 for j —i > p. Now, according to (16), one can
not corrupted by noise (nominal case) being available witite P(s) = [A(s) — W (s) — W (s)]/B(s), and the mismatch
sufficient precision at every current time instant. transfer function takes the form:

Remark 2 Requirements qletermined by A4 are com- I'(s) (13) 1 — G(s)Grels) a . B(S)P(S)
mon in the literature addressing feedforward design for the A(s)
continuous-time systems in the contexttadjectory tracking (15) W (s) (16) W(s) + W (s)
control probler (see e.qg. [5], [6], [24], [26]). They correspond = A(s) = A(s) (21)
to sufficient smoothness of a reference trajectory. In thre pa
ticular case of only piecewise constant reference sigrfeéfo  Since the sensitivity functiorb(s) in (13) does not de-

encountered in industrial applications), which shall leated pend on a feedforward controller, the tracking error can be
rather as adegenerated trajectoryone can meet assumptiondecreased — at least over some finite frequency range which
A4 by preliminary smoothingthe reference signal passingcovers a spectrum of reference siggal— by decreasing the
it through a low-pass filter of sufficiently high dynamicsnodule|I'(jw)| through appropriate design of coefficients of
order. If this additional complexity is not acceptable fronpolynomial P(s) (note:j £ /—1).
any reasons, one can eventually treat the piecewise cdénstan
reference signal asimost satisfyingassumption A4 by taking
yfl“)(t) = ... = yfil)(t) = 0 (that is, by omitting a zero-
measure set of Dirac deltas). Let us assume first that the degree of polynomidk)
results from the order of plant dynamics, thatiis= n. In
[Il. FEEDFORWARD DESIGN IN A FREQUENCY DOMAIN  thjs case, one can directly influence the fitst 1 coefficients
We are going to investigate how the nominal design stra@af polynomial W (s) in (16). In particular, one can remove
egy (14) can be approximated by application of the fixegolynomial W (s) from mismatch transfer function (21) by
structure feedforward control law defined by (3). The way dfesigning coefficientg, to p,, such thatwy = ... = w, = 0.
approximation proposed in the sequel will determine a whifiAccording to equations (19)-(20), and under assumption A2,
approach to a bounded feedforward control design for botheads to the following recursive design formulas:
minimum- and nonminimum-phase systems. o
Do = ao, (22)

B. The new approximate-inverse feedforward control law

A. Characteristic transfer functions fatrr £ P(s)

The error transfer function (12) in the case of feedforward
control law (11) takes the following form

M)[AG) ~ BEPE)] - MEWE) o5
M(s)A(s) + B(s)L(s) H(s) w8 (1) 2 pay () + -+ iy (1) + poyalt),  (24)

where — upon assumption A3 — it is guaranteed that character- o )
istic equationf (s) = 0 has all the roots in the open left-halfWith coefficientspy, ..., p, computed upon (22)-(23) will be

complex plane. PolynomidV (s) = A(s) — B(s)P(s) can be called thecorrected-approximate-inverg¢€Al) controller. The
expressed in the detailed form as name reflects the fact that design equation (23) corrects a

. m simplistic inverse of (1), resulting only from the inversé o
W(s) = Z a;5 — Z Z bip; st — VT/(S) " W(s), (16) denominator polynomiall(s), by the values of coefficients of
7=0

J
pjéaj—Zbipj,i for ]6{1,,71} (23)
1=1

As a consequence, the feedforward control law

Gg(s) =

numerator polynomiaB(s).

Next, let the degree of polynomidP(s) extend over the
LIn contrast to the case of discrete-time systems, where thmess of a order of plant dynamics, i.e: > n. In this case, it is possible
reference trajectory is usually not an issue thanks to theeifip form of to further reduce the mismatch transfer function (21) by
discrete-time controllers operating only on samples ofrepate signals (a . . .

zeroing subsequent coefficients, 1, ...,w, of polynomial

reader interested in discrete-time feedforward contrelie referred e.g. to ” - 1 N )
[4], [21] and references cited therein). W (s), see (17). Following this design guideline, and recalling

i=0 j=0
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(20) under assumption A2, one obtains the recursive desigpplies also here. As a consequence, XAl feedforward con-
equation of extending coefficients (note; = 0 for j > n) trollers for the closed-loop-inversion case can be syiitkéds
j upon the same equations (22)-(26) but now using coefficients
A o ; b; and a; taken from the resultant polynomialB(s) and
bi ;bzp]ﬂ for je{ntl ) (25) A(s), resfpectively. Worth to emphasize that transfer function
(28) directly depends on a structure and parameters of the
troller can be defined fon > n: contrqllertransferfunctioGR(s). Theref_ore_, in contrast to the
' plant-inversion feedforward case, designing the closegH
uE (1) 2 py () + .+ pusry T () + S (1), (26) inversion feedforward is dependent on feedback controller
dynamics.

Now, the followingextended-approximate-inver§geAl) con-

whereuEf'(t) results from definition (24).
Application of the CAI/EAI (in short: XAl) controllers Remark 4:Since practical implementations of today control
allows reducing the mismatch function (21) to the form  systems are mostly on digital devices, a justified question

YAl YAl arises about discrete-time versions of XAl controllersisTis-
™ (s) =1 - G(s)Gre (s) sue involves distinguishing between two alternative apphes
(17) Wygms' T+ + w1 sMT! 27) to the discrete-time (DT) control synthesis problem. Let us
N A(s) ’ shortly comment this issue with a help of a chart presented
where i = n for CAl and > n for EAI controller. The in Fig. 3. The proposed feedforward control law (3) has been
form of mismatch transfer functio” (s) determines the détérmined in the continuous-time (CT) domain asoainal
best possible tracking performance attainable in the dios&nOice for the case where dynamics of a plant is described by
loop system with a fixed stabilizing controllé¥z and with the CT model (the nominal CT-CT case highlighted in gray in
CAI or EAI feedforward applied (see Section IV-A). Fig. 3). Designing the DT version of the controller for the CT

Remark 3:Although in the paper we are focused on the
plant-inversion feedforward, the proposed XAl contradlean controfier—_F1ant CT DT
be employed also in a system with the closed-loop-inversion
feedforward illustrated in Fig. 2. In this case, the transfe

CT nominal case

DT approximate case nominal case

y(u)
1,

I

Fig. 2. The 2DOF control system with the closed-loop-inerdeedforward.

Fig. 3. A chart collecting possible combinations of contins-time (CT) or
discrete-time (DT) controller applied to a plant descrilvedhe continuous-
time (CT) or discrete-time (DT) domain; the nominal casesidered in the
paper is highlighted in gray.

Gi(s)

reference
signals
generator

plant dynamics shall be treated as an approximate approach
which can be addressed generally in two alternative ways:
by discretization of a controller structure originally dgsed
function Gee(s) is designed as an (approximate) inverse d¢f the CT domain, or by DT approximation of the CT plant
the closed-loop dynamics represented by transfer functiéfnamics followed by a design of a DT controller. Both

Gu(s) 2 Y (s)/Ra(s). In particular, if approaches lead to very similar control performance when
_ sampling timeT,; > 0 used for discretization is sufficiently
Gal(s) = Gr(s)Gls) L(s)B(s) _ B(5) small relative to a bandwidth of plant dynamics. The former

1+ Gr(s)G(s)  M(s)A(s) + L(s)B(s)  A(s) approach, however, seems simpler by preserving very ivguit
will be treated as a ratio of some resultant polynomiaontroller synthesis performed in the CT domain. Assuming
B(S) = byps™+. . .+b1s+by andA(s) = a,s"+...+a;s+ao this line of reasoning, a DT version of XAl control law
satisfying assumptions Al and A2, then the error transfisr especially simple and results only from sampling of the
function for the system from Fig. 2 results from the equatioreference trajectory and its time-derivatives with sanmgtime
. E(s) Ts, that is

£ =1—Gu(8)Gre(s) =: Ty (s), 28
Yals) ((8)Cre(s) =t Tals),  (28) WX (KTL) 2 py (KT + .+ pryV (KT + poya(kTy),

where E(s) = Yu(s) — Y (s) represents the tracking error, . (30)
while T';(s) denotes a feedforward mismatch function for th¥/h€rek = 0,1,2... Worth to stress that all the signals used
closed-loop-inversion approach. According to (28), akimg ©" th_e rlght-hand side of the above equation are aygﬂable at
accuracy depends in this case only on the mismatch functi@jy time instantt = kT, upon assumption A4. Efficiency

which for the fixed-structure feedforward (11) takes tharfor ©F XAl controllers in the DT version (30) can be assessed
upon exemplary experimental results presented in SectiBn V

Tu(s) = 1_]?(5)13(8) — A(s) __B(S)P(S) — VT_/(S). (29) Where the DT feedforward was applied to the CT plant with
A(s) A(s) A(s) sampling time7, = 0.01s. Designing the DT versions of
Since the structure of mismatch function (29) is analogous XAl feedforward controllers directly for DT plants involse
(21), the key reasoning presented in Sections Ill-A andBllI-Separate investigations and is out of the paper scope.
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IV. ANALYSIS OF APPROXIMATE-INVERSE CONTROLLERS t0 20(p — ¢ + 1) dB/dec and20(n — i + 1)dB/dec. Thus,
A. Properties of XAl controllers for y > n the function Ln¥*'(w) either lies entirely under

CAl o ; |
Let us analyze how XAl controllers affect tracking error m®*(«) over the range?, or it intersects function LAf" («)

XAl 1/(n—n) i
(2). According to (13), one can write the frequency-doma@t some _frequencyzc - |w?“/w““| » which has
relation een estimated upon equation (33). As a consequence, one

E(w) = SGu)T(w)Ya(jw), (31) may conclude that

* * * EAIl /= CAl /=
where the produc$ (jw)I'(jw) can be treated as a frequency- A =[0,w7): Vweq |F (jw)‘ < ‘F (jw)‘ » (35)
weighted sensitivity function with weighit(jw). SinceS(jw), wherew* = min{w’*' w,}, that is, the EAI controller out-
for a given plant dynamic&:(s), is determined solely by a performs the CAI controller over the rang. The difference
stabilizing controller, a feedforward controller is resgible between logarithmic modules
for decreasindI'(jw)| as much as possible to obtain an ac- N
ceptable tracl?ing(; a<2<|:uracy at least over some finite freqyuen ALm(w) 2 LM w) — Lm(w)
range of interest. Hereafter, we will particularly consice ~ 20(1 — n) logw + 20log [wyt1 /w41

low-frequency range increases proportionally to the differenpe- n at any fixed

Q20,w,), 0<w,<oo (32) frequencyw € Q*. One may conclude, that successive in-
creasing ofu above degree ensures gradual improvement of
wherew, determines a frequency band for a reference trajegacking control performance at anye Q.
tory, that is, a frequency range beyond which an amplitudeworth considering yet another interpretation of equation
spectrum ofy,(t) is zero or can be neglected. Selection of31), et Z4(jw) £ T'(jw)Yy(jw) represent a Fourier trans-
range (32) has been motivated by the fact that most practigglm of a fictitious input signal to the closed-loop system,

plants exhibit low-pass dynamics. . “which in the time domain for XAl feedforward controllers
We are going to analyze properties of the mismatch functiqa, pe described as

for CAl and EAI feedforward controllers, especially oveeth 1
) N . (27) (u+m) (u+1)
frequency range defined by (32). For simplicity, we will refe z4(t) = A(s) WutmYq )+ Fwarryg ()]

to the XAl mismatch function (27), which boils down to the ) ) _
CAI case by taking: = n. The above equation may be interpreted as a low-pass filtered

By rewriting (27) in the form (through filter F(s) = 1/A(s)) weighted combination of
o " . . the higher-order time-derivatives of reference trajectpi(t).
XA (5 — (Wagms™ " 4.+ wug)s? T W (s)s” Thus, in a special case of a reference trajectory for which

A(s) A(s) the higher-order time-derivatives vanish with order, arftew
one can easily find that the logarithmic module A(s) is Hurwitz, the error peak
XAl ([, \ & XAl (% pm _

Lm™™ (w) = 20105;\1“ (]W)’v ) i esssup |e(t)] < eseg - Z |w; | sup ‘yy)(t)‘ ’

=20(u + 1) logw + 20 log ‘W*(jw)‘ —20log |A(jw)| 20 i=p+1 20
can be approximated in a low frequency range (i.e. fdfith € = [0 |£7HS()}B)[dt < oo and ¢ =
sufficiently smallw € ) by Jo7 |£7H{1/A(s)}(t)] dt < oo, can be made sufficiently small

Al A by increasingu (note:e; < oo upon assumption A3, while
Lm™(w) ~ 20(p — i + 1) logw + x™, (33) ¢; < 0 if A(s) is Hurwitz).

wherex*A = 201og |wy,+1| — 201og |a;|, while i is the index ~ Remark 5:Worth recalling that the 2-norm of the transient
of a non-zero coefficient; corresponding to the least powererrore(t) cannot be made arbitrarily small when a plant has the
of s in polynomial A(s). Thus, for anyu > n the following nonminimum-phase dynamics. It is a fundamental limitation
convergence is satisfied: addressed by various investigators (see e.g. [1], [18]})[22

XAl which is independent of a control method applied.

Lm**(w —0) = -0 = [T’ (ju—0)] 0.

. . Remark 6: Application of EAI controller seems to be
In_ alow freq_uency range, the rate of convergence is monmorﬂl'njustifiable when the plant transfer function has a timiexgde
with approximately constant slope term approximated by its finite Taylor-series expansiona(8)
» dLm*A (W) (10), see Remark 1. These kinds of approximation influence
~ dlogw the order of dynamics (1). Thus, extension of degre@
It means that the XAl feedforward controllers guarante 11) shall follow prior |ncIu3|on.0f the nexth|gher-orde|r|_lns .
rom the Taylor-series expansion to make the approximation

improvement of tracking performance for the reference tra- . .
P gp more accurate, which leads again to the CAI control law but

Jsequtf%rifr?tgldng;ir\g\:lvgr;:ge@amphwde spectra. contained in \?vith higher degreg:. The above intuition has been verified
Further, according to (33), the low-frequency slopes (?fy simulation example in Section V-A.
functions Lnf" (w) and Lnt"(w) depend on degreg of Remark 71n a special case, when the plant transfer function

feedforward polynomial (11), and they are equal, respelstiv have no zeros and no time-delay, th&is) = D(s) = 1,

N (W) ~20(u —i+ 1)dB/dec  (34)
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A(s) = C(s) (cf. (1) and (7)), and feedforward coefficientsome frequencies\?', w?ME, and w?FE, respectively. As a

c

p;j = ¢ = a; for j = 0,...,n (see (22)-(23)). As a consequence, one concludes that for sufficiently largen
consequence, the CAI control law (24) corresponds to the_ -

_ ~N . 0 XAl (= YYY (>
classical model-inverse feedforwaér(s) = G~*(s) which Q=[0,0): YweQ [ (uw)| < [T (Gw)|, (44)
guarantees perfect (asymptotic) tracking in the closeg-loywhere o = min{wh?' WwZME WZPE w1, and YYY €
system. {NZI,ZME, ZPE}. It means that for sufficiently large the

XAl controllers improve tracking control performance otlee

B. Comparison of XAl controllers with classical methods range() C Q relative to all three classical approximate-inverse

. - ) feedforward methods when a plant has the nonminimum-phase
We are going to qualitatively compare effectiveness of t

; ) ) namics.
newly proposed control law with three classical approxgnat ",k to the form of error transfer function (28), the above
inverse feedforward methods — NZI, ZME, and ZPE — fqr

. - easoning can be repeated for the mismatch fundfigtjw)
the par_ucular case where a p_Iant_has the nonmlnlmum-ph@ggding to analogous general conclusions for the case of the
dynamics BP(s) # 1). To this aim, let us recall transfer

. . . : closed-loop-inversion feedforward when a closed-loopesys
functions of the classical controllers and their speciam® | < he nonminimum-phase dynamics
obtained under assumption A2: ’

A(s) A(s) Remark 8:Assessments of degrgein (42) and (43) are

G (5) & - (36) conservative, since they result from tautiousestimation
i B(s)Br(0)  B"(s)’ i i i
made in (33) together with theorst-caseassumption where
GEME (5) & A(s) 37) the mismatch functionsN? (s), T#ME(s), and'*PE(s) reduce
FF B"(s)BP(—s)’ to single terms of their numerators corresponding to the
2pE, \ o A(s)BP(—s)  A(s)BP(—s) 38 highest power of. Thus in particular cases, the left-hand side
Gre(s) = Bn(s)[Br(0)2 ~ B™(s) (38) inequalities of (42)-(43) can be satisfied for lower degree
. _— . _ than estimated in (42)-(43).
Recalling definition of the mismatch function (13), the form _
of polynomial (5), and plant dynamics (1) one gets Remark 9:If the plant transfer function (1) has zeros
5 solely in the left-half complex plane (the minimum-phase
N2 (5) &1 Br(s) = —By8Y — ... = Pis, plant with B(s) = B"(s) # 1) then the XAl controllers
2ME, | (3T) Br(s)  [(-1)Y—1]B,s7 —...—2Bs 9V only an approximate feedforward, even so the accurate
% (s) =1 - Br(—s)  (C1)Bs +.. —Bist1 feedforwardGRE' = GEM® = GEF = A(s)/B"(s) exists
(38) B B and could be applied in this case. This limitation of the
I?PE(s) "= 1 — BP(s)BP(—5) = —Bays™ — ... — Bas?, proposed method seems to have rather moderate consequences

in practical applications because one can make approximate
feedforward (3) arbitrarily close to the accurate one inwa lo
frequency range by increasing the degre®n the other hand,

the process of successive increasinguofvill finally reach

a practical limitation once a tracking error level reaches a

LmZ¥E(10), and LnfPE(w). Upon the forms of the above mis_Ievel of a measurement noise present in a feedback signal (an

. _ further potential improvement of a tracking accuracy résgl
match transfer functions one may (conservatively) assgssru ¢ .o ninued increasing of will be lost by immersion in
bounds of particular slopes for sufficiently low frequers;ciethe noise — see Section V-B)

w € Q) as follows:

where the numerator ofF?ME(s) includes only terms with
odd powers of, while polynomial of[*PE(s) comprises only
terms with even powers of.

Continuing reasoning from Section IV-A, let us esti
mate slopes of the logarithmic module functions %hfw),

NN?(w) £ 20y < 20m < 20n dB/deg (39) V. VERIFICATION OF THE METHOD
NME(w) < 20y < 20m < 20n dB/deg (40) A. Numerical examples
N*PEw) < 20 - 2y dB/deg (41)  Four numerical examples, denoted as SimA, SimB, SimC,

. and SimD, illustrate main properties of the proposed feedfo
where estimation in (39)-(40) comes from the fact that \\arq controllers. During simulations, three controllemvé

m < n according to assumptions Al and A2. Comparing (34jeey applied: CAI, EAIL, and EAI2, where the latter two
with estimates (39)-(41) one can conclude that for suffiyen yenote the extended approximate-inverse feedforwardtéth

low w € © hold: one-order { = n + 1) and two-order g = n + 2) extension,
N (w) > NN (w) for _ 42 respectively. The feedforward controllers have been egpf
N*A (W) > N?ME(y) p=vte—1 42)  the closed-loop system from Fig. 1 with proportional stiabit
N*A (44) > NZPE() for u>2y+i—1. (43) Gr = kp with &k, = 1.6 fo_r SImA, k), = 1.0 for SimB and
SimC, andk, = 0.2 for SimD. Simulation results illustrate
Thus, there exists sufficiently large> n satisfying (42) and control performance in a response to reference trajectory
(43) such that LAY (w) either lies entirely under functionsy,(t) £ 0.5 sin(0.4¢)+1.0sin(0.2¢)+1.5sin(0.1¢), employing
LmMN? (w), Lm*ME(w), and Lnf"E(w) over the range?, or it the following switching pattern for feedforward controlo n
intersects functions LN'(w), Lm*™E(w), and Lnf"§w) at feedforward fort e [0,100)s, CAl for ¢t € [100,200)s,
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EAI1 for ¢t € [200,300)s, and EAI2 fort € [300,400]s Similar conclusions can be formulated upon the plots pre-
(with exception of example SimCwhere CAI controller has sented in Fig. 5 for the example SimB. In this case, the third-
been only switched to EAIL feedforward at= 200s). The order plantGp is stable but has one positive and one neg-
following exemplary plant dynamics have been selected fative zero which dominate the poles. Tracking improvement

SimA, SimB, SimC, and SimD, respectively: achieved with EAI2 controller relative to ZPE feedforward
. L 04s 41 21 = 4250 g;nuonudn;s more than one order of magnitude for tracking error
A= p) ’ _ _ .
0.352 + 0.82 —-15 s1=+1.27,5, = —3.94 Plots in Fig. 6 obtained for the nonminimum-phase delay-
Gp = -5 +1 z1 =+1.0,22=—-1.0  dominated plantG¢ confirm the intuition formulated in Re-
0.255% 4+ 1.75s2 4 4s +3"  s1=—3.0,s23=—2.0 mark 6, according to which application of EAI controllers
G — —0.2s+1 z1 =+5.0 does not improve tracking performance relative to the CAI
CT T2 exp(—5), s1=—-2.0 one. In this context, worth noting the Bode-magnitude plot
—0.1s+1 2 = +10.0 shown in Fig. 6 where the characteristics|6f (jw)| almost
Gp = T2 15 0 s51=00,5=—1.0 overlap in the low-frequency range for all the CAIl and

_ EAI controllers. However, by including ittZc3 the higher-
where zeros:; and poless; of the particular transfer func- grder terms of Taylor-series expansion (8), the feedfodwar
tlons_ have been denotegl on the rlght-har_ld side. Trar‘sﬁ%'lynomial degreeu has been naturally increased, and the
function Gio was approximated by two rational dynamicew form of CAI controller obtained in this way has become
(corresponding to simulation cases denoted by Sira@d more effective as can be seen in Fig. 7 (when compared with

SimG;, respectively) Fig. 6). Similarly as before, application of EAI controliéoes
(8) —0.2s+1 not improve tracking performance more (indicated also by
Goz = 0.553 +252+35+2° the Bode-magnitude plé)t however, one can see substantial
(8) —0.2s+1 tracking improvement obtained in this case with CAl coréol
Ges = 0.17s* +0.83s% + 252+ 35+ 2’ relative to the classical ones.

Example SimD illustrates the results for the nonminimum-
d phase marginally stable plant dynamics with a single pole

for particular simulation examples are collected in Table qqual to zero. In th|s.case, the EA.Il and EAI2 feedfprward
(coefficients used for CAI control law are denoted in bold .ontrollers gradually improve tracking performance et

The results of numerical simulations are presented in Bigs o CAl controller. However, when compared to the classical
" feedforward control laws (see the comparative trackimgssr

plot on the right-hand side in Fig. 8), one can see that applic

obtained by using expansion (8) for = 2 andv = 3,
respectively. Values of coefficients, j =0, ..., u, compute

TABLE | tion of CAl feedforward leads to worse tracking performance

COMPUTED COEFFICIENTS OFCAI/EAl CONTROLLERS than the one obtained with classical ZPE control law. It is a
[Ccoefficient | SimA~ | SimB | SimG, | SimG; | SimD | direct consequence of condition (43), upon which the tragki

Do —1.500 | 3.000 | 2.000 | 2.000 | 0.000 control improvement with XAl feedforward is guaranteed for
P1 0.200 | 4.000 | 3.400 | 3.400 | 1.000 p > 2 (note: in this case/ = 1 andi = 1). Sincey =n = 2
i i %:??g 3:228 f:ggg f:ggg 10‘_}(1)8 for CAIl controller, a tra<_:king accuracy improvement over
Pa 0.061 1750 | 0.207 | 0.441 | 0.011 ZPE method can be obtained by applying EAI controller with
Ps5 - 4.250 | 0.041 | 0.088 - 1> n = 2. Nearly two orders of magnitude improvement can

be seen in Fig. 8 for tracking error bounds obtained with EAI2
In example SimA, the plant is represented by the secongbntroller.

order unstable transfer functi@i, which has a single positive ~Summarizing the comments to simulation results, worth
zero. Figure 4 shows substantial tracking improvement aft® note that a quantitative tracking accuracy improvement
turning CAI feedforward on at = 100s, and then successiveachievable due to application of XAl controllers depends on
improvements of tracking accuracy after switching to EAlfelative locations of poles and zeros of the approximatedtpl
and EAI2 controllers. Further increasing pf will provide dynamics. Similar effect was observed and studied for the
continued reduction of the tracking error bound. The Bodsetassical feedforward methods, see e.g. [3], [4]. Furtbeg
magnitude plot of error transfer function (12) in Fig. 4shall also mention that tracking accuracy improvement in a
indicates that all XAl controllers shall improve trackingrfor- low frequency range by application of XAl controllers has a
mance for the considered reference trajectory when cordpag@nsequence in the form of tracking performance degrauatio
to the classical feedforward laws. It is confirmed by thi# a high-frequency range. This waterbed-like effect, ggen
comparative plot of absolute tracking errors on the righally common to the XAl and classical controllers), can be
hand side in Fig. 4 obtained for NZI, ZME, ZPE and threebserved in the Bode-magnitude plots in Figs. 4-8, where one
considered XAl controllers (note: in this cage= 1 andi = 0, can observe substantial increase of the error transfetitumc
thus (42) and (43) are met by all XAl controllers). A trackingnodule at high frequencies with increase of degrelractical
accuracy improvement aChieV.ed With EAIZ controller refai 2The error transfer function (12) has been computed for tizengte SimC
to ZPE feedforward amounts in this case about two orders @f axing ¢ = G, with the time delay term approximated by theorder
magnitude for tracking error bounds. Padé method (functioRADE( 1, 5) in Matlab).
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consequences of this effect shall be taken into account when plant control signal ul
a reference signal contains high-frequency components. e —
analog plant ys
Remark 10:To make a view more comprehensive, the twd T (based on the MAX 265 chip)
. .| PComputer s
exemplary Bode-magnitude plots of error transfer functio + 1/0 card
(28) have been presented in Fig. 9 in the case of the close Vlsflm S&H PCI-DAS1602/12
loop-inversion feedforward (cf. Fig. 2) designed for p\arep-  |RealTimePRO
resented by transfer functioss andG . One can see similar
20l0g|G(jw)| = 20log|T (jw)| [dB] 20log|G(jw)| = 20log|r"  (jw)| [dB] plant output signal y |
100 200
50 o] 150 Fig. 10. Experimental testbed scheme with analog eledrplsint HILSys.
& j// 7 100
0 iz St 8|
L s s 50
REBT g - Nz 0 Input-output signals were sampled with a constant sampling
< / — — —ZME . . .
-100 R interval T, = 0.01s. A plant model has been estimated using
I CAI [ ~100 the SVF-RLS method, [10], yielding the second-order transf
Sl -1s0 function G(s) 2 Y (s) /U (s), where
-200}/ v 200 ]
w [rad/s] w [rad/s]
-250 -250 ~
107 10" 10° 10" 100 107 107 10° 10t 10° N bis+1 —0.1864s + 1

Fig. 9. Bode-magnitude plots of error transfer function)(&8 the classical 4082 + 1S + & 0.035452 + 0.0809s + 1.0042
and proposed XAl controllers in two cases of the plant trang&inction: G 4 287+ 15+ do ’ +0. t1
(left) and Gz (right).

tendency as in the plant-inversion feedforward case, WhJ}%S asingle positive zeeq = +5.3648 and a pair of complex

XAl controllers ensure gradual tracking control improverne QOleS_SLQ N _1'14.27# 5:2021j. A step response of model

in a low frequency range by increasing of degre&Vorth not- G(s) is presented in Fig. 11.

ing, however, less beneficial result (in the quantitativess$ Validation has been performed for CAl and two versions of

obtained here for planf'4 relative to the result presented inEAI controllers, denoted as EAI1 and EAI2, the latter ones

Fig. 4 where the plant-inversion feedforward was applied. designed for the first ordey(= 3) and second ordey(= 4)
extension, respectively. Particular feedforward cotgrsltake

B. Experimental validation

The proposed feedforward controllers have been validated
experimentally to show their effectiveness in the presesfce
a model parametric uncertainty and a measurement noise. The
plant HILSysused for experiments was an analog electronic
circuit with operational amplifiers build in the MAX 265 chip
equipped with external adjustable resistive potentionsete
The control input voltage: and plant outputy have been
applied/measured in a quasi real time in a fast-prototypysg -05; : . .
tem comprising the 1/0O card PCI-DAS1602/12 and a PC com- R
puter with the VisSim+RealTimePRO software (see Fig. 10)ig. 11. A step response of nonminimum-phase transfer famc¥(s).
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the forms ,
20log|G_E(jw)|
2 1
uS = poyt? + pry + pova, 100
3 2 1
uEé'l = pgy((i ) +p2y((i ) +p1y,(1 ) + PoYad, sol
EAI2 (4) (3) (2) (1)

UEE T = D4y + D3y, + P2y, +P1Y;  + PoYd

o

with the following values of weighting coefficientgi, =
1.0042, p; = 0.2681, p, = 0.0854, p3 = 0.0159, and
ps = 0.0030. XAl controllers were implemented in the fast-
prototyping system using their DT versions represented |

Magnitude (dB)
I
[
o

(30) for T, = 0.01s. Two separate tests have been pe -100f

formed in a closed-loop system with proportional stahiligi

controller Gp £ k, = 0.1 in a response to reference 150¢

signal y4(t) = sin(wqt) applied for two values of reference

frequencywy € {1.0,2.0} rad/s. In both tests, the stabilizing -2020,1 : 100 : " "
controller worked alone for the first ten seconds, and the Frequency (radisec)

a selected feedforward controller was turned on. The ®sult

of tracking performance are presented in Fig. 12. They hakig. 13. Frequency responses of the error transfer fund¢fi@) computed
been compared with tracking errors obtained for three idalss " p'a”ft fmo(;jfe'G(j‘a’)' St?b'l'l'zr'gg controllerGr = kp = 0.1 and various
feedforward controllers, which for plant(s) take the form¥ 'ypes of feedforward controllere(j).

uNZI —a (2) + a (1) + a .
FF = 92Yq4 1Yaq 0Yd; for wy = 1rad/s when compared to the classical methods.
1 . R . . . . . . . _ . .
uEME — [agyf) + alyfil) n aoyd} ’ This prediction is conflrmed by.the upper time plots in F@_. 1
—bis+1 and by values of quality functional in Table Il. Relative im-

uZPE = —Bldgyf) + (a2 — 31d1)y§2) + (4 — Bldo)yfll) + dgyg.Provement _of trackl_ng performance comparing C_AI and EAIL1
controllers is small in this case. Further practical imgoent
o _ by application of EAI2 controller seems questionable. One
For the purpose of qugnt:tatlzve comparison of the metho@sn explain the above effects by the low signal-to-noisie rat
the performance index. = ;7 e*(t)dt has been computed for reached in this case (values in Table Il denoted by a star mark
the last thirty seconds of the experiments. Values of thexndgye highly uncertain), by the plant model uncertainty, agd b
relative to other terms present in signg'?.
TABLE Il For the reference frequenay, = 2rad/s, it is expected
VALUES OF PERFORMANCE INDEXJ. FOR VARIOUS FEEDFORWARD th | t . F 13 th t CA| t ” d
CONTROLLERS AND SINUSOIDAL REFERENCE SIGNAlyg = Sin(wdt) upon_ e p ot in Ig' a controlier can prov! €
tracking performance comparable to the ZPE method. Evident
[ Method | J. for wy = Trad/s | Je for wy = 2rad/s | . ..
improvement should be seen only after application of EAI

NZI 0.4745 1.0872 : ' .
ZME 1.8130 65812 controllers. These expectations are confirmed by the piots i
ZPE 0.0214 0.3445 Fig. 12 and by values of the performance index in Table II.
CAl 0.0046 0.2424 Again, a relative tracking accuracy improvement obtainét w
el 0003 0021 EAI2 control | to be rather slight wh dt
EAD 0005T" 0.0159" control law seems to be rather slight when compared to

the case of EAI1 controller due to similar reasons mentioned

plots of every column in Fig. 12 present amplitude spectfPove.

of (sampled) tracking-error signals computed for partcul

control methods with sampling interval, = 0.01 s according VI. CONCLUDING REMARKS

to definition: Summarizing, worth to emphasize that the proposed
CAI/EAI feedforward controllers have a fixed weighted-tne

N—-1
|En(wi)| 2 2 Z e(kT,) exp(—jkTwy), wi = ﬂ, combination structure. It means that the form of equation
N k—0 NT; (3) remains the same for all the plants, minimum- and
wherek — 0.1.....N — 1. while N denotes a number of Nonminimum-phase, with the same order of dynamics. This

samples used for computations. Figure 13 additionally shoRfOPerty makes the new controllers especially simple for
Bode-magnitude diagram of transfer function (12) obtaifoed industrial implementations when the current values of arref
particular feedforward methods applied in the controleyst €N trajectory and its time-derivatives are availabléhéfref-

Properties revealed by the Bode diagram can be confronf§Nce time-derivatives are not available, it is still poigsto
with the time plots presented in Fig. 12. use CAI/EAI controllers by reconstructing the time-detivas

According to the plots in Fig. 13, both CAI and EAI€-9- with utilization of the so-called robust exact diffietiators
controllers should yield clearly better closed-loop parfance Introduced in [16], [17]. .
It has been shown that for sufficiently low frequency range a
3For G(s) we haveB(s) = BP(s), B" = 1. tracking control accuracy attainable with the proposechiot
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Results fory,(t) = sin(t)

12

Results foryq(t) = sin(2t)
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Fig. 12. Plots of tracking errors(t) in the linear and logarithmic scales together with ampétispectrg E (w)| of tracking-error signals obtained on the
experimental testbed for the proposed CAl, EAIL, and EAl@taglers and compared with three classical feedforwandtrodlers NZI, ZME, and ZPE.

can be successively improved by increasing the degreé¢ frequency range. Like in the classical feedforward control
the feedforward controller polynomial. Practical limitat of methods, the particular quantitative tracking improvetragn
this reduction generally comes from three main reasongla laainable with XAl controllers substantially depends oratige

of knowledge on higher-order time-derivatives of a refeeen locations of poles and zeros of the considered plant dyreamic
trajectory, a poor quality of a plant model, and the presence

of a measurement noise which inherently restricts ability o

:rea:(r:r:(iwg dal;: Clg?ﬁgﬁ:ﬁg:?;gg%ﬁ ?lfurgteralilet'(;niiti;vfl de At present, the proposed XAl feedforward controllers do not
y 9 ' P have their counterparts for the plants described by discret

the XAl controllers designed for sufficiently high polynaahi dels widel d i d
degreen may outperform the classical approximate- |nverstlme models widely used in various applications due to sim-
qICIty of their practical utilization. Applicability exnsion

methods when applied to the nonminimum-phase dynam SPthe proposed feedforward control method for discretesti
if a spectrum of a reference trajectory is included in a low?
systems remains an open research problem.
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