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for minimum- and nonminimum-phase

LTI SISO systems
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Abstract—Fundamental limitation of the model-inverse feed-
forward control results from instability or non-causality of the
inverse of nonminimum-phase dynamics which cannot be applied
in practice. To overcome this limitation, the approximate-inverse
methods have been proposed in the literature. Structures of
feedforward controllers proposed so far highly depend on a
plant model structure. Therefore in general, their implementation
may be inconvenient or troublesome in industrial applications.
In this context, a simple fixed-structure feedforward control
law is proposed in this paper in a form of a weighted linear
combination of a reference trajectory and its time-derivatives.
Design rules for selection of the weights are derived and provided
in an explicit (analytical) form. The proposed control law can
be employed to both nonminimum- and minimum-phase LTI
SISO systems. The new method has been compared with classical
feedforward controllers known from the literature reveali ng its
advantages and limitations. Results of numerical examplesand
experimental validation tests obtained for an electronic plant have
been reported.

Index Terms—feedforward control design, trajectory tracking,
nonminimum-phase dynamics, linear systems

I. I NTRODUCTION

L ET us consider an LTI SISO plant, with inputu(t) and
outputy(t), represented by the transfer function

G(s) ,
Y (s)

U(s)
=

bmsm + . . .+ b1s+ b0
ansn + . . .+ a1s+ a0

=
B(s)

A(s)
(1)

with b0 6= 0. Model (1) covers both stable/unstable and
minimum-phase/nonminimum-phase dynamics. The problem
under consideration concerns feedforward control design for
system (1) in the two-degrees-of-freedom (2DOF) tracking
control system. In the literature, one distinguishes two al-
ternative 2DOF control structures: with theplant-inversion
feedforward and with theclosed-loop-inversionfeedforward.
In the paper, an attention will be mostly paid on the former
structure presented in Fig. 1, whereyd denotes a sufficiently
smooth reference trajectory,GR(s) is a stabilizing controller,
ande is a tracking error

e(t) , yd(t)− y(t). (2)

The plant-inversion feedforward has several important prop-
erties discussed e.g. in [7] and has been widely utilized in
industrial applications, [8], [21]. One particular advantage of
the control system structure with plant-inversion feedforward,
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which motivated its selection for further considerations,is an
independence of a feedforward design process from dynamics
of a stabilizing controller.

Various approaches to feedforward control design have been
proposed in the literature, see e.g. [2], [5], [12], [14], [20]
and the review papers [7], [21]. The classical model-inverse
approach, applied in the control system from Fig. 1, employs
a feedforward controllerGFF(s) equal to an inverseG−1(s) of
plant dynamics. It has been shown in [8] that the feedforward
control designed in this way improves output-tracking perfor-
mance relative to a pure feedback control if a plant-model
uncertainty is sufficiently small (at least over some frequency
range of interest). The model-inverse strategy, however, has a

Fig. 1. The 2DOF control system with the plant-inversion feedforward.

fundamental limitation, sinceGFF(s) = G−1(s) is practically
applicable only if the system (1) is minimum-phase, that is
when all the roots of numerator polynomial of (1) lie in
the left-half complex plane [13]. To overcome this limitation,
two alternative general classes of feedforward design methods
have been proposed in the literature for the nonminimum-
phase plants: preview-based methods and approximate-inverse
methods. Control laws from the former class (see e.g. [26],
[27], and [15]) employ the preview information about a
reference trajectory which must be available sufficiently early
prior to its application in the control system. Methods from
the second class try to approximate the unstable exact inverse
of the plant model by some stable transfer function. In this
paper, we are mostly interested in the approximate-inverse
methods which are relatively simple and require only current
values of the reference signal and its time-derivatives (see
[4] and [7], [21]). In this class, three classical concepts have
been proposed: the nonminimum-phase zero ignore (NZI), the
zero-magnitude error (ZME), and the zero-phase error (ZPE)
methods (various extensions or modifications of them can be
found in [6], [11], [19], [23], [24]). Origins of the classical
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methods naturally come from the frequency domain analysis.
As a consequence, a structure and effectiveness of the classical
approximate-inverse feedforward controllers generally depend
on a particular structure and quantitative characteristics of a
plant transfer function [4].

The aim of this work is to provide simple rules of feedfor-
ward control design for dynamics (1) in a form of the linear
combination of a reference trajectory and its successive time-
derivatives

uFF(t) , pµy
(µ)
d (t) + . . .+ p1y

(1)
d (t) + p0yd(t), (3)

whereµ ∈ N and pµ, . . . , p0 ∈ R are treated as design pa-
rameters. Selection of coefficientspµ, . . . , p0 proposed in the
paper takes into account not only poles of the plant dynamics
but also allows compensating for the influence of a time-delay
and plant zeros, regardless of their location in the open left-
or right-half complex plane. The main reason for proposing
the fixed-structure feedforward (3) comes from its simplicity,
especially in the context of its practical implementation.

The design approach presented in this paper is a frequency-
domain generalization of the idea based on a simple time-
domain analysis of plant dynamics presented in the prelimi-
nary work [9]. For the sake of conciseness, the time-domain
analysis is not continued here. Instead, the feedforward design
rules are derived completely in a frequency domain, which
provides more insight into benefits and limitations of the new
method, and permits its direct comparison with the classical
feedforward methods known from the literature.

Application of a fixed-structure feedforward is not a com-
pletely new idea. A feedforward control law similar to (3)
for the special case ofµ = 4 has been proposed for the
class of electromechanical servo systems in [25] (see also
references cited therein). The method presented in this paper
generalizes the concept of a fixed-structure feedforward to
a wider class of systems represented by (1), and provides
explicit analytical equations for the coefficients of a linear
combination in (3). Furthermore, the proposed method has
been qualitatively and quantitatively compared with the NZI,
ZME, and ZPE control laws revealing conditions under which
the new method outperforms the classical ones in the context
of obtainable ultimate output-tracking performance.

II. SYSTEM DESCRIPTION AND ASSUMPTIONS

We formulate two essential assumptions related to system
(1) required for further considerations.

A1. Dynamics (1) is at least proper (n ≥ m), is perfectly
known, and the numerator and denominator polynomials
of (1) do not have any common factors.

A2. PolynomialB(s) is such thatB(0) = b0 = 1, and can
be factorized as follows

B(s) = Bp(s)Bn(s), (4)

where

Bp(s) = βγs
γ + . . .+ β1s+ 1, γ ≤ m, (5)

Bn(s) = αλs
λ + . . .+ α1s+ 1, λ ≤ m, (6)

with γ + λ = m, represent polynomials with roots
having solely strictly positive or strictly negative real
parts, respectively (no roots on the imaginary axis).

Perfect knowledge of the plant dynamics assumed in A1
indicates that we address a nominal feedforward control
design, where any parametric uncertainty is not considered.
Assumption A2 does not reduce generality of model (1). In
the case whenB(0) 6= 1, one can simply divide numerator
and denominator of (1) byb0 to meet A2.

Remark 1:In a more general case, the plant dynamics is
usually described by the transfer function

G(s) =
D(s)

C(s)
exp(−sT0), (7)

whereC(s) = cnc
snc+. . .+c1s+c0, D(s) = dmd

smd+. . .+
d1s + d0, degC(s) = nc ≥ degD(s) = md, while T0 > 0
represents a time-delay. The required rational form of transfer
function (1) can be obtained in this case by approximating the
time-delay term of (7) with one of three most popularν-order
rational approximations:

exp(−sT0) ≈
1

qνsν + . . . q1s+ 1
, qi =

T i
0

i!
, (8)

exp(−sT0) ≈ 1 + q1s+ . . .+ qνs
ν , qi =

(−T0)
i

i!
, (9)

exp(−sT0) ≈
(1 − T0s/2ν)

ν

(1 + T0s/2ν)ν
, ν ∈ N, (10)

where the latter one is called theν-order Padé approximation.
The effect of the above approximation on resultant control
performance achievable with feedforward control law (3) will
be illustrated in Section V-A.

For the purpose of further analysis let us define three
characteristic transfer functions:

GR(s) ,
UR(s)

E(s)
=

lrs
r + . . .+ l1s+ l0

Mksk + . . .+M1s+M0
=

L(s)

M(s)
,

GFF(s) ,
UFF(s)

Yd(s)

(3)
= P (s) = pµs

µ + . . .+ p1s+ p0, (11)

GE(s) ,
E(s)

Yd(s)
=

1−G(s)GFF(s)

1 +G(s)GR(s)
(12)

= S(s)[1−G(s)GFF(s)] = S(s)Γ(s) (13)

which represent, respectively, dynamics of the stabilizing con-
troller, the fixed-structure feedforward controller forµ ≥ n,
and dynamics of theerror transfer function.S(s) introduced in
(13) is a closed-loop sensitivity function, whileΓ(s) represents
the feedforward mismatchtransfer function such that

Γ(s) ≡ 0 ⇔ GFF(s) , G−1(s). (14)

Satisfaction of (14) guarantees a zero steady-state tracking
error in a response to reference trajectoryyd(t). Thus, relation
(14) reflects a nominal case of feedforward control design,
which is practically feasible ifG−1(s) is stable and causal.
It is well known that (14) is not acceptable when the transfer
functionG(s) is nonminimum-phase.

Let us complement assumptions A1-A2 with two additional
prerequisites related to the control system presented in Fig. 1.
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A3. GR(s) is a stabilizing controller for system (1) guarantee-
ing stability of the closed-loop system from Fig. 1 with
uFF = 0, that is, all the poles of error transfer function
(12) are located in the open left-half complex plane.

A4. The reference trajectoryyd(t) : R≥0 7→ R is a bounded
continuous-time function of classCµ with sufficiently
high µ ≥ 1. Moreover,yd(t) as well as its successive
time-derivativesy(1)d (t), . . . , y

(µ)
d (t) are perfectly known

at any current time instantt ≥ 0.
Assumption A3 permits the plant dynamics to be only
marginally stable or even unstable. Assumption A4 ensures
that time-derivativesy(1)d (t), . . . , y

(µ)
d (t) exist, are bounded,

and all the reference signalsyd(t), y
(1)
d (t), . . . , y

(µ)
d (t) are

not corrupted by noise (nominal case) being available with
sufficient precision at every current time instant.

Remark 2: Requirements determined by A4 are com-
mon in the literature addressing feedforward design for the
continuous-time systems in the context oftrajectory tracking
control problem1 (see e.g. [5], [6], [24], [26]). They correspond
to sufficient smoothness of a reference trajectory. In the par-
ticular case of only piecewise constant reference signal (often
encountered in industrial applications), which shall be treated
rather as adegenerated trajectory, one can meet assumption
A4 by preliminary smoothingthe reference signal passing
it through a low-pass filter of sufficiently high dynamics
order. If this additional complexity is not acceptable from
any reasons, one can eventually treat the piecewise constant
reference signal asalmost satisfyingassumption A4 by taking
y
(µ)
d (t) = . . . = y

(1)
d (t) ≡ 0 (that is, by omitting a zero-

measure set of Dirac deltas).

III. F EEDFORWARD DESIGN IN A FREQUENCY DOMAIN

We are going to investigate how the nominal design strat-
egy (14) can be approximated by application of the fixed-
structure feedforward control law defined by (3). The way of
approximation proposed in the sequel will determine a unified
approach to a bounded feedforward control design for both
minimum- and nonminimum-phase systems.

A. Characteristic transfer functions forGFF , P (s)

The error transfer function (12) in the case of feedforward
control law (11) takes the following form

GE(s) =
M(s)[A(s)−B(s)P (s)]

M(s)A(s) +B(s)L(s)
=

M(s)W (s)

H(s)
, (15)

where – upon assumption A3 – it is guaranteed that character-
istic equationH(s) = 0 has all the roots in the open left-half
complex plane. PolynomialW (s) = A(s)−B(s)P (s) can be
expressed in the detailed form as

W (s) =
n
∑

j=0

ajs
j −

m
∑

i=0

µ
∑

j=0

bipjs
j+i = W̆ (s) + W̃ (s), (16)

1In contrast to the case of discrete-time systems, where smoothness of a
reference trajectory is usually not an issue thanks to the specific form of
discrete-time controllers operating only on samples of appropriate signals (a
reader interested in discrete-time feedforward controllers is referred e.g. to
[4], [21] and references cited therein).

where

W̆ (s) = wµ+msµ+m + . . .+ wn+1s
n+1, (17)

W̃ (s) = wns
n + . . .+ w1s+ w0, (18)

with coefficients

w0 = a0 − b0p0, (19)

wj = aj − b0pj −
j

∑

i=1

bipj−i, j ∈ {1, . . . , µ+m}, (20)

taking aj = 0 for j > n, bi = 0 for i > m, and
pj−i = 0 for j − i > µ. Now, according to (16), one can
write P (s) = [A(s)−W̆ (s)−W̃ (s)]/B(s), and the mismatch
transfer function takes the form:

Γ(s)
(13)
= 1−G(s)GFF(s)

(11)
= 1− B(s)

A(s)
P (s)

(15)
=

W (s)

A(s)

(16)
=

W̆ (s) + W̃ (s)

A(s)
. (21)

Since the sensitivity functionS(s) in (13) does not de-
pend on a feedforward controller, the tracking error can be
decreased – at least over some finite frequency range which
covers a spectrum of reference signalyd – by decreasing the
module|Γ(j̄ω)| through appropriate design of coefficients of
polynomialP (s) (note: j̄ ,

√
−1).

B. The new approximate-inverse feedforward control law

Let us assume first that the degree of polynomialP (s)
results from the order of plant dynamics, that isµ = n. In
this case, one can directly influence the firstn+1 coefficients
of polynomial W (s) in (16). In particular, one can remove
polynomial W̃ (s) from mismatch transfer function (21) by
designing coefficientsp0 to pn such thatw0 = . . . = wn = 0.
According to equations (19)-(20), and under assumption A2,
it leads to the following recursive design formulas:

p0 , a0, (22)

pj , aj −
j

∑

i=1

bipj−i for j ∈ {1, . . . , n}. (23)

As a consequence, the feedforward control law

uCAI
FF (t) , pny

(n)
d (t) + . . .+ p1y

(1)
d (t) + p0yd(t), (24)

with coefficientsp0, . . . , pn computed upon (22)-(23) will be
called thecorrected-approximate-inverse(CAI) controller. The
name reflects the fact that design equation (23) corrects a
simplistic inverse of (1), resulting only from the inverse of
denominator polynomialA(s), by the values of coefficients of
numerator polynomialB(s).

Next, let the degree of polynomialP (s) extend over the
order of plant dynamics, i.e.µ > n. In this case, it is possible
to further reduce the mismatch transfer function (21) by
zeroing subsequent coefficientswn+1, . . . , wµ of polynomial
W̆ (s), see (17). Following this design guideline, and recalling
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(20) under assumption A2, one obtains the recursive design
equation of extending coefficients (note:aj = 0 for j > n)

pj , −
j

∑

i=1

bipj−i for j ∈ {n+ 1, . . . , µ}. (25)

Now, the followingextended-approximate-inverse(EAI) con-
troller can be defined forµ > n:

uEAI
FF (t) , pµy

(µ)
d (t) + . . .+ pn+1y

(n+1)
d (t) + uCAI

FF (t), (26)

whereuCAI
FF (t) results from definition (24).

Application of the CAI/EAI (in short: XAI) controllers
allows reducing the mismatch function (21) to the form

ΓXAI (s) = 1−G(s)GXAI
FF (s)

(17)
=

wµ+msµ+m + . . .+ wµ+1s
µ+1

A(s)
, (27)

whereµ = n for CAI and µ > n for EAI controller. The
form of mismatch transfer functionΓXAI (s) determines the
best possible tracking performance attainable in the closed-
loop system with a fixed stabilizing controllerGR and with
CAI or EAI feedforward applied (see Section IV-A).

Remark 3:Although in the paper we are focused on the
plant-inversion feedforward, the proposed XAI controllers can
be employed also in a system with the closed-loop-inversion
feedforward illustrated in Fig. 2. In this case, the transfer

Fig. 2. The 2DOF control system with the closed-loop-inversion feedforward.

function GFF(s) is designed as an (approximate) inverse of
the closed-loop dynamics represented by transfer function
Gcl(s) , Y (s)/Rd(s). In particular, if

Gcl(s) =
GR(s)G(s)

1 +GR(s)G(s)
=

L(s)B(s)

M(s)A(s) + L(s)B(s)
=

B̄(s)

Ā(s)

will be treated as a ratio of some resultant polynomials
B̄(s) = b̄msm+. . .+b̄1s+b̄0 andĀ(s) = āns

n+. . .+ā1s+ā0
satisfying assumptions A1 and A2, then the error transfer
function for the system from Fig. 2 results from the equation

GE(s) ,
E(s)

Yd(s)
= 1−Gcl(s)GFF(s) =: Γcl(s), (28)

whereE(s) = Yd(s) − Y (s) represents the tracking error,
while Γcl(s) denotes a feedforward mismatch function for the
closed-loop-inversion approach. According to (28), a tracking
accuracy depends in this case only on the mismatch function,
which for the fixed-structure feedforward (11) takes the form

Γcl(s) = 1− B̄(s)

Ā(s)
P (s) =

Ā(s)− B̄(s)P (s)

Ā(s)
=

W̄ (s)

Ā(s)
. (29)

Since the structure of mismatch function (29) is analogous to
(21), the key reasoning presented in Sections III-A and III-B

applies also here. As a consequence, XAI feedforward con-
trollers for the closed-loop-inversion case can be synthesized
upon the same equations (22)-(26) but now using coefficients
b̄i and āj taken from the resultant polynomials̄B(s) and
Ā(s), respectively. Worth to emphasize that transfer function
(28) directly depends on a structure and parameters of the
controller transfer functionGR(s). Therefore, in contrast to the
plant-inversion feedforward case, designing the closed-loop-
inversion feedforward is dependent on feedback controller
dynamics.

Remark 4:Since practical implementations of today control
systems are mostly on digital devices, a justified question
arises about discrete-time versions of XAI controllers. This is-
sue involves distinguishing between two alternative approaches
to the discrete-time (DT) control synthesis problem. Let us
shortly comment this issue with a help of a chart presented
in Fig. 3. The proposed feedforward control law (3) has been
determined in the continuous-time (CT) domain as anominal
choice for the case where dynamics of a plant is described by
the CT model (the nominal CT-CT case highlighted in gray in
Fig. 3). Designing the DT version of the controller for the CT

Fig. 3. A chart collecting possible combinations of continuous-time (CT) or
discrete-time (DT) controller applied to a plant describedin the continuous-
time (CT) or discrete-time (DT) domain; the nominal case considered in the
paper is highlighted in gray.

plant dynamics shall be treated as an approximate approach
which can be addressed generally in two alternative ways:
by discretization of a controller structure originally designed
in the CT domain, or by DT approximation of the CT plant
dynamics followed by a design of a DT controller. Both
approaches lead to very similar control performance when
sampling timeTs > 0 used for discretization is sufficiently
small relative to a bandwidth of plant dynamics. The former
approach, however, seems simpler by preserving very intuitive
controller synthesis performed in the CT domain. Assuming
this line of reasoning, a DT version of XAI control law
is especially simple and results only from sampling of the
reference trajectory and its time-derivatives with sampling time
Ts, that is

uXAI
FF (kTs) , pµy

(µ)
d (kTs) + . . .+ p1y

(1)
d (kTs) + p0yd(kTs),

(30)
wherek = 0, 1, 2 . . . Worth to stress that all the signals used
on the right-hand side of the above equation are available at
any time instantt = kTs upon assumption A4. Efficiency
of XAI controllers in the DT version (30) can be assessed
upon exemplary experimental results presented in Section V-B
where the DT feedforward was applied to the CT plant with
sampling timeTs = 0.01 s. Designing the DT versions of
XAI feedforward controllers directly for DT plants involves
separate investigations and is out of the paper scope.
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IV. A NALYSIS OF APPROXIMATE-INVERSE CONTROLLERS

A. Properties of XAI controllers

Let us analyze how XAI controllers affect tracking error
(2). According to (13), one can write the frequency-domain
relation

E(j̄ω) = S(j̄ω)Γ(j̄ω)Yd(j̄ω), (31)

where the productS(j̄ω)Γ(j̄ω) can be treated as a frequency-
weighted sensitivity function with weightΓ(j̄ω). SinceS(j̄ω),
for a given plant dynamicsG(s), is determined solely by a
stabilizing controller, a feedforward controller is responsible
for decreasing|Γ(j̄ω)| as much as possible to obtain an ac-
ceptable tracking accuracy at least over some finite frequency
range of interest. Hereafter, we will particularly consider a
low-frequency range

Ω , [0, ωg], 0 < ωg < ∞ (32)

whereωg determines a frequency band for a reference trajec-
tory, that is, a frequency range beyond which an amplitude
spectrum ofyd(t) is zero or can be neglected. Selection of
range (32) has been motivated by the fact that most practical
plants exhibit low-pass dynamics.

We are going to analyze properties of the mismatch function
for CAI and EAI feedforward controllers, especially over the
frequency range defined by (32). For simplicity, we will refer
to the XAI mismatch function (27), which boils down to the
CAI case by takingµ = n.

By rewriting (27) in the form

ΓXAI (s) =
(wµ+msm−1 + . . .+ wµ+1)s

µ+1

A(s)
=

W̆ ∗(s)sµ+1

A(s)

one can easily find that the logarithmic module

LmXAI (ω) , 20 log
∣

∣ΓXAI (j̄ω)
∣

∣

= 20(µ+ 1) logω + 20 log
∣

∣

∣
W̆ ∗(j̄ω)

∣

∣

∣
− 20 log |A(j̄ω)|

can be approximated in a low frequency range (i.e. for
sufficiently smallω ∈ Ω) by

LmXAI (ω) ≈ 20(µ− i+ 1) logω + χXAI , (33)

whereχXAI = 20 log |wµ+1| − 20 log |ai|, while i is the index
of a non-zero coefficientai corresponding to the least power
of s in polynomialA(s). Thus, for anyµ ≥ n the following
convergence is satisfied:

LmXAI (ω → 0) → −∞ ⇒
∣

∣ΓXAI (j̄ω → 0)
∣

∣ → 0.

In a low frequency range, the rate of convergence is monotonic
with approximately constant slope

NXAI (ω) ,
dLmXAI (ω)

d logω
≈ 20(µ− i+ 1)dB/dec. (34)

It means that the XAI feedforward controllers guarantee
improvement of tracking performance for the reference tra-
jectories yd having the amplitude spectra contained in a
sufficiently narrow rangeΩ.

Further, according to (33), the low-frequency slopes of
functions LmEAI(ω) and LmCAI(ω) depend on degreeµ of
feedforward polynomial (11), and they are equal, respectively,

to 20(µ − i + 1)dB/dec and20(n − i + 1)dB/dec. Thus,
for µ > n the function LmEAI(ω) either lies entirely under
LmCAI(ω) over the rangeΩ, or it intersects function LmCAI(ω)

at some frequencyωXAI
c ≈ |wn+1/wµ+1|1/(µ−n), which has

been estimated upon equation (33). As a consequence, one
may conclude that

∃Ω∗ = [0, ω∗) : ∀ω ∈ Ω∗
∣

∣ΓEAI(j̄ω)
∣

∣ <
∣

∣ΓCAI(j̄ω)
∣

∣ , (35)

whereω∗ = min{ωXAI
c , ωg}, that is, the EAI controller out-

performs the CAI controller over the rangeΩ∗. The difference
between logarithmic modules

∆Lm(ω) , LmEAI(ω)− LmCAI(ω)

≈ 20(µ− n) logω + 20 log |wµ+1/wn+1|
increases proportionally to the differenceµ − n at any fixed
frequencyω ∈ Ω∗. One may conclude, that successive in-
creasing ofµ above degreen ensures gradual improvement of
tracking control performance at anyω ∈ Ω∗.

Worth considering yet another interpretation of equation
(31). Let Zd(j̄ω) , Γ(j̄ω)Yd(j̄ω) represent a Fourier trans-
form of a fictitious input signal to the closed-loop system,
which in the time domain for XAI feedforward controllers
can be described as

zd(t)
(27)
=

1

A(s)

[

wµ+my
(µ+m)
d (t) + . . .+ wµ+1y

(µ+1)
d (t)

]

.

The above equation may be interpreted as a low-pass filtered
(through filter F (s) = 1/A(s)) weighted combination of
the higher-order time-derivatives of reference trajectory yd(t).
Thus, in a special case of a reference trajectory for which
the higher-order time-derivatives vanish with order, and when
A(s) is Hurwitz, the error peak

esssup
t≥0

|e(t)| ≤ εsεf ·
µ+m
∑

i=µ+1

|wi| sup
t≥0

∣

∣

∣
y
(i)
d (t)

∣

∣

∣
,

with εs = ∫∞0
∣

∣L−1{S(s)}(t)
∣

∣ dt < ∞ and εf =
∫∞0

∣

∣L−1{1/A(s)}(t)
∣

∣ dt < ∞, can be made sufficiently small
by increasingµ (note: εs < ∞ upon assumption A3, while
εf < ∞ if A(s) is Hurwitz).

Remark 5:Worth recalling that the 2-norm of the transient
errore(t) cannot be made arbitrarily small when a plant has the
nonminimum-phase dynamics. It is a fundamental limitation
addressed by various investigators (see e.g. [1], [18], [22]),
which is independent of a control method applied.

Remark 6: Application of EAI controller seems to be
unjustifiable when the plant transfer function has a time-delay
term approximated by its finite Taylor-series expansion (8)or
(10), see Remark 1. These kinds of approximation influence
the order of dynamics (1). Thus, extension of degreeµ in
(11) shall follow prior inclusion of the next higher-order terms
from the Taylor-series expansion to make the approximation
more accurate, which leads again to the CAI control law but
with higher degreeµ. The above intuition has been verified
by simulation example in Section V-A.

Remark 7:In a special case, when the plant transfer function
have no zeros and no time-delay, thenB(s) = D(s) = 1,
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A(s) = C(s) (cf. (1) and (7)), and feedforward coefficients
pj = cj = aj for j = 0, . . . , n (see (22)-(23)). As a
consequence, the CAI control law (24) corresponds to the
classical model-inverse feedforwardGFF(s) = G−1(s) which
guarantees perfect (asymptotic) tracking in the closed-loop
system.

B. Comparison of XAI controllers with classical methods

We are going to qualitatively compare effectiveness of the
newly proposed control law with three classical approximate-
inverse feedforward methods – NZI, ZME, and ZPE – for
the particular case where a plant has the nonminimum-phase
dynamics (Bp(s) 6≡ 1). To this aim, let us recall transfer
functions of the classical controllers and their special forms
obtained under assumption A2:

GNZI
FF (s) ,

A(s)

Bn(s)Bp(0)
=

A(s)

Bn(s)
, (36)

GZME
FF (s) ,

A(s)

Bn(s)Bp(−s)
, (37)

GZPE
FF (s) ,

A(s)Bp(−s)

Bn(s)[Bp(0)]2
=

A(s)Bp(−s)

Bn(s)
. (38)

Recalling definition of the mismatch function (13), the form
of polynomial (5), and plant dynamics (1) one gets

ΓNZI(s)
(36)
= 1−Bp(s) = −βγs

γ − . . .− β1s,

ΓZME(s)
(37)
= 1− Bp(s)

Bp(−s)
=

[(−1)γ − 1]βγs
γ − . . .− 2β1s

(−1)γβγsγ + . . .− β1s+ 1
,

ΓZPE(s)
(38)
= 1−Bp(s)Bp(−s) = −β̄2γs

2γ − . . .− β̄2s
2,

where the numerator ofΓZME(s) includes only terms with
odd powers ofs, while polynomial ofΓZPE(s) comprises only
terms with even powers ofs.

Continuing reasoning from Section IV-A, let us esti-
mate slopes of the logarithmic module functions LmNZI(ω),
LmZME(ω), and LmZPE(ω). Upon the forms of the above mis-
match transfer functions one may (conservatively) assess upper
bounds of particular slopes for sufficiently low frequencies
ω ∈ Ω as follows:

NNZI(ω) / 20γ ≤ 20m ≤ 20n dB/dec, (39)

NZME(ω) / 20γ ≤ 20m ≤ 20n dB/dec, (40)

NZPE(ω) / 20 · 2γ dB/dec, (41)

where estimation in (39)-(40) comes from the fact thatγ ≤
m ≤ n according to assumptions A1 and A2. Comparing (34)
with estimates (39)-(41) one can conclude that for sufficiently
low ω ∈ Ω hold:

NXAI (ω) > NNZI(ω)
NXAI (ω) > NZME(ω)

}

for µ > γ + i− 1, (42)

NXAI (ω) > NZPE(ω) for µ > 2γ + i− 1. (43)

Thus, there exists sufficiently largeµ ≥ n satisfying (42) and
(43) such that LmXAI (ω) either lies entirely under functions
LmNZI(ω), LmZME(ω), and LmZPE(ω) over the rangeΩ, or it
intersects functions LmNZI(ω), LmZME(ω), and LmZPE(ω) at

some frequenciesωNZI
c , ωZME

c , and ωZPE
c , respectively. As a

consequence, one concludes that for sufficiently largeµ ≥ n

∃ Ω̃ = [0, ω̃) : ∀ω ∈ Ω̃
∣

∣ΓXAI (j̄ω)
∣

∣ <
∣

∣ΓYYY (j̄ω)
∣

∣ , (44)

where ω̃ = min{ωNZI
c , ωZME

c , ωZPE
c , ωg}, and YYY ∈

{NZI,ZME,ZPE}. It means that for sufficiently largeµ the
XAI controllers improve tracking control performance overthe
rangeΩ̃ ⊆ Ω relative to all three classical approximate-inverse
feedforward methods when a plant has the nonminimum-phase
dynamics.

Thanks to the form of error transfer function (28), the above
reasoning can be repeated for the mismatch functionΓcl(j̄ω)
leading to analogous general conclusions for the case of the
closed-loop-inversion feedforward when a closed-loop system
has the nonminimum-phase dynamics.

Remark 8:Assessments of degreeµ in (42) and (43) are
conservative, since they result from thecautiousestimation
made in (33) together with theworst-caseassumption where
the mismatch functionsΓNZI(s), ΓZME(s), andΓZPE(s) reduce
to single terms of their numerators corresponding to the
highest power ofs. Thus in particular cases, the left-hand side
inequalities of (42)-(43) can be satisfied for lower degreeµ
than estimated in (42)-(43).

Remark 9: If the plant transfer function (1) has zeros
solely in the left-half complex plane (the minimum-phase
plant with B(s) ≡ Bn(s) 6≡ 1) then the XAI controllers
give only an approximate feedforward, even so the accurate
feedforwardGNZI

FF = GZME
FF = GZPE

FF = A(s)/Bn(s) exists
and could be applied in this case. This limitation of the
proposed method seems to have rather moderate consequences
in practical applications because one can make approximate
feedforward (3) arbitrarily close to the accurate one in a low
frequency range by increasing the degreeµ. On the other hand,
the process of successive increasing ofµ will finally reach
a practical limitation once a tracking error level reaches a
level of a measurement noise present in a feedback signal (any
further potential improvement of a tracking accuracy resulting
from continued increasing ofµ will be lost by immersion in
the noise – see Section V-B).

V. V ERIFICATION OF THE METHOD

A. Numerical examples

Four numerical examples, denoted as SimA, SimB, SimC,
and SimD, illustrate main properties of the proposed feedfor-
ward controllers. During simulations, three controllers have
been applied: CAI, EAI1, and EAI2, where the latter two
denote the extended approximate-inverse feedforward withthe
one-order (µ = n+ 1) and two-order (µ = n+ 2) extension,
respectively. The feedforward controllers have been applied in
the closed-loop system from Fig. 1 with proportional stabilizer
GR = kp with kp = 1.6 for SimA, kp = 1.0 for SimB and
SimC, andkp = 0.2 for SimD. Simulation results illustrate
control performance in a response to reference trajectory
yd(t) , 0.5 sin(0.4t)+1.0 sin(0.2t)+1.5 sin(0.1t), employing
the following switching pattern for feedforward control: no
feedforward for t ∈ [0, 100)s, CAI for t ∈ [100, 200)s,
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EAI1 for t ∈ [200, 300)s, and EAI2 for t ∈ [300, 400]s
(with exception of example SimC3 where CAI controller has
been only switched to EAI1 feedforward att = 200 s). The
following exemplary plant dynamics have been selected for
SimA, SimB, SimC, and SimD, respectively:

GA =
−0.4s+ 1

0.3s2 + 0.8s− 1.5
,

z1 = +2.50
s1 = +1.27, s2 = −3.94

GB =
−s2 + 1

0.25s3 + 1.75s2 + 4s+ 3
,

z1 = +1.0, z2 = −1.0
s1 = −3.0, s2,3 = −2.0

GC =
−0.2s+ 1

s+ 2
exp(−s),

z1 = +5.0
s1 = −2.0

GD =
−0.1s+ 1

s2 + s
,

z1 = +10.0
s1 = 0.0, s2 = −1.0

where zeroszi and polessi of the particular transfer func-
tions have been denoted on the right-hand side. Transfer
function GC was approximated by two rational dynamics
(corresponding to simulation cases denoted by SimC2 and
SimC3, respectively)

GC2
(8)
=

−0.2s+ 1

0.5s3 + 2s2 + 3s+ 2
,

GC3
(8)
=

−0.2s+ 1

0.17s4 + 0.83s3 + 2s2 + 3s+ 2
,

obtained by using expansion (8) forν = 2 and ν = 3,
respectively. Values of coefficientspj , j = 0, . . . , µ, computed
for particular simulation examples are collected in Table I
(coefficients used for CAI control law are denoted in bold).
The results of numerical simulations are presented in Figs.4-8.

TABLE I
COMPUTED COEFFICIENTS OFCAI/EAI CONTROLLERS

coefficient SimA SimB SimC2 SimC3 SimD

p0 −1.500 3.000 2.000 2.000 0.000

p1 0.200 4.000 3.400 3.400 1.000

p2 0.380 4.750 2.680 2.680 1.100

p3 0.152 4.250 1.036 1.369 0.110
p4 0.061 4.750 0.207 0.441 0.011
p5 – 4.250 0.041 0.088 –

In example SimA, the plant is represented by the second-
order unstable transfer functionGA which has a single positive
zero. Figure 4 shows substantial tracking improvement after
turning CAI feedforward on att = 100 s, and then successive
improvements of tracking accuracy after switching to EAI1
and EAI2 controllers. Further increasing ofµ will provide
continued reduction of the tracking error bound. The Bode-
magnitude plot of error transfer function (12) in Fig. 4
indicates that all XAI controllers shall improve tracking perfor-
mance for the considered reference trajectory when compared
to the classical feedforward laws. It is confirmed by the
comparative plot of absolute tracking errors on the right-
hand side in Fig. 4 obtained for NZI, ZME, ZPE and three
considered XAI controllers (note: in this caseγ = 1 andi = 0,
thus (42) and (43) are met by all XAI controllers). A tracking
accuracy improvement achieved with EAI2 controller relative
to ZPE feedforward amounts in this case about two orders of
magnitude for tracking error bounds.

Similar conclusions can be formulated upon the plots pre-
sented in Fig. 5 for the example SimB. In this case, the third-
order plantGB is stable but has one positive and one neg-
ative zero which dominate the poles. Tracking improvement
achieved with EAI2 controller relative to ZPE feedforward
amounts more than one order of magnitude for tracking error
bounds.

Plots in Fig. 6 obtained for the nonminimum-phase delay-
dominated plantGC confirm the intuition formulated in Re-
mark 6, according to which application of EAI controllers
does not improve tracking performance relative to the CAI
one. In this context, worth noting the Bode-magnitude plot
shown in Fig. 6 where the characteristics of|GE(j̄ω)| almost
overlap in the low-frequency range for all the CAI and
EAI controllers. However, by including inGC3 the higher-
order terms of Taylor-series expansion (8), the feedforward
polynomial degreeµ has been naturally increased, and the
new form of CAI controller obtained in this way has become
more effective as can be seen in Fig. 7 (when compared with
Fig. 6). Similarly as before, application of EAI controllerdoes
not improve tracking performance more (indicated also by
the Bode-magnitude plot2), however, one can see substantial
tracking improvement obtained in this case with CAI controller
relative to the classical ones.

Example SimD illustrates the results for the nonminimum-
phase marginally stable plant dynamics with a single pole
equal to zero. In this case, the EAI1 and EAI2 feedforward
controllers gradually improve tracking performance relative
to CAI controller. However, when compared to the classical
feedforward control laws (see the comparative tracking-errors
plot on the right-hand side in Fig. 8), one can see that applica-
tion of CAI feedforward leads to worse tracking performance
than the one obtained with classical ZPE control law. It is a
direct consequence of condition (43), upon which the tracking
control improvement with XAI feedforward is guaranteed for
µ > 2 (note: in this caseγ = 1 and i = 1). Sinceµ = n = 2
for CAI controller, a tracking accuracy improvement over
ZPE method can be obtained by applying EAI controller with
µ > n = 2. Nearly two orders of magnitude improvement can
be seen in Fig. 8 for tracking error bounds obtained with EAI2
controller.

Summarizing the comments to simulation results, worth
to note that a quantitative tracking accuracy improvement
achievable due to application of XAI controllers depends on
relative locations of poles and zeros of the approximated plant
dynamics. Similar effect was observed and studied for the
classical feedforward methods, see e.g. [3], [4]. Further,one
shall also mention that tracking accuracy improvement in a
low frequency range by application of XAI controllers has a
consequence in the form of tracking performance degradation
in a high-frequency range. This waterbed-like effect, (gener-
ally common to the XAI and classical controllers), can be
observed in the Bode-magnitude plots in Figs. 4-8, where one
can observe substantial increase of the error transfer function
module at high frequencies with increase of degreeµ. Practical

2The error transfer function (12) has been computed for the example SimC
by taking G = GC with the time delay term approximated by the5-order
Padé method (functionPADE(1,5) in Matlab).
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Fig. 4. SimA: Time-plots of selected signals (left), Bode-magnitude plot of error transfer function (12) for the classical and proposed feedforward controllers
(middle), and comparison of absolute tracking errors in a logarithmic scale obtained with various feedforward controllaws in the case of plantGA (right).
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Fig. 5. SimB: Time-plots of selected signals (left), Bode-magnitude plot of error transfer function (12) for the classical and proposed feedforward controllers
(middle), and comparison of absolute tracking errors in a logarithmic scale obtained with various feedforward controllaws in the case of plantGB (right).
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(middle), and comparison of absolute tracking errors in a logarithmic scale obtained with various feedforward controllaws in the case of plantGC approximated
by GC2 (right).
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(middle), and comparison of absolute tracking errors in a logarithmic scale obtained with various feedforward controllaws in the case of plantGC approximated
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consequences of this effect shall be taken into account when
a reference signal contains high-frequency components.

Remark 10:To make a view more comprehensive, the two
exemplary Bode-magnitude plots of error transfer function
(28) have been presented in Fig. 9 in the case of the closed-
loop-inversion feedforward (cf. Fig. 2) designed for plants rep-
resented by transfer functionsGA andGB. One can see similar
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Fig. 9. Bode-magnitude plots of error transfer function (28) for the classical
and proposed XAI controllers in two cases of the plant transfer function:GA

(left) andGB (right).

tendency as in the plant-inversion feedforward case, where
XAI controllers ensure gradual tracking control improvement
in a low frequency range by increasing of degreeµ. Worth not-
ing, however, less beneficial result (in the quantitative sense)
obtained here for plantGA relative to the result presented in
Fig. 4 where the plant-inversion feedforward was applied.

B. Experimental validation

The proposed feedforward controllers have been validated
experimentally to show their effectiveness in the presenceof
a model parametric uncertainty and a measurement noise. The
plant HILSysused for experiments was an analog electronic
circuit with operational amplifiers build in the MAX 265 chip
equipped with external adjustable resistive potentiometers.
The control input voltageu and plant outputy have been
applied/measured in a quasi real time in a fast-prototypingsys-
tem comprising the I/O card PCI-DAS1602/12 and a PC com-
puter with the VisSim+RealTimePRO software (see Fig. 10).

Fig. 10. Experimental testbed scheme with analog electronic plant HILSys.

Input-output signals were sampled with a constant sampling
intervalTs = 0.01 s. A plant model has been estimated using
the SVF-RLS method, [10], yielding the second-order transfer
function Ĝ(s) , Ŷ (s)/U(s), where

Ĝ(s) =
b̂1s+ 1

â2s2 + â1s+ â0
=

−0.1864s+ 1

0.0354s2 + 0.0809s+ 1.0042

has a single positive zeroz1 = +5.3648 and a pair of complex
poless1,2 = −1.1427 ± 5.2021j̄. A step response of model
Ĝ(s) is presented in Fig. 11.

Validation has been performed for CAI and two versions of
EAI controllers, denoted as EAI1 and EAI2, the latter ones
designed for the first order (µ = 3) and second order (µ = 4)
extension, respectively. Particular feedforward controllers take
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Fig. 11. A step response of nonminimum-phase transfer function Ĝ(s).
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the forms

uCAI
FF = p2y

(2)
d + p1y

(1)
d + p0yd,

uEAI1
FF = p3y

(3)
d + p2y

(2)
d + p1y

(1)
d + p0yd,

uEAI2
FF = p4y

(4)
d + p3y

(3)
d + p2y

(2)
d + p1y

(1)
d + p0yd

with the following values of weighting coefficients:p0 =
1.0042, p1 = 0.2681, p2 = 0.0854, p3 = 0.0159, and
p4 = 0.0030. XAI controllers were implemented in the fast-
prototyping system using their DT versions represented by
(30) for Ts = 0.01 s. Two separate tests have been per-
formed in a closed-loop system with proportional stabilizing
controller GR , kp = 0.1 in a response to reference
signal yd(t) , sin(ωdt) applied for two values of reference
frequencyωd ∈ {1.0, 2.0} rad/s. In both tests, the stabilizing
controller worked alone for the first ten seconds, and then
a selected feedforward controller was turned on. The results
of tracking performance are presented in Fig. 12. They have
been compared with tracking errors obtained for three classical
feedforward controllers, which for plant̂G(s) take the forms3:

uNZI
FF = â2y

(2)
d + â1y

(1)
d + â0yd,

uZME
FF =

1

−b̂1s+ 1

[

â2y
(2)
d + â1y

(1)
d + â0yd

]

,

uZPE
FF = −b̂1â2y

(3)
d + (â2 − b̂1â1)y

(2)
d + (â1 − b̂1â0)y

(1)
d + â0yd.

For the purpose of quantitative comparison of the methods,
the performance indexJe , ∫ t2t1 e2(t)dt has been computed for
the last thirty seconds of the experiments. Values of the index
obtained during the tests are collected in Table II. The lasttwo

TABLE II
VALUES OF PERFORMANCE INDEXJe FOR VARIOUS FEEDFORWARD

CONTROLLERS AND SINUSOIDAL REFERENCE SIGNALyd = sin(ωdt)

Method Je for ωd = 1 rad/s Je for ωd = 2 rad/s

NZI 0.4745 1.9872
ZME 1.8130 6.5812
ZPE 0.0214 0.3445
CAI 0.0046 0.2424
EAI1 0.0034∗ 0.0231
EAI2 0.0051∗ 0.0159∗

plots of every column in Fig. 12 present amplitude spectra
of (sampled) tracking-error signals computed for particular
control methods with sampling intervalTs = 0.01 s according
to definition:

|EN (ωk)| ,
2

N

N−1
∑

k=0

e(kTs) exp(−j̄kTsωk), ωk =
2πk

NTs
,

where k = 0, 1, . . . , N − 1, while N denotes a number of
samples used for computations. Figure 13 additionally shows
Bode-magnitude diagram of transfer function (12) obtainedfor
particular feedforward methods applied in the control system.
Properties revealed by the Bode diagram can be confronted
with the time plots presented in Fig. 12.

According to the plots in Fig. 13, both CAI and EAI
controllers should yield clearly better closed-loop performance

3For Ĝ(s) we haveB(s) = Bp(s), Bn ≡ 1.
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Fig. 13. Frequency responses of the error transfer function(12) computed
for plant modelĜ(j̄ω), stabilizing controllerGR = kp = 0.1 and various
types of feedforward controllersGFF(j̄ω).

for ωd = 1 rad/s when compared to the classical methods.
This prediction is confirmed by the upper time-plots in Fig. 12
and by values of quality functional in Table II. Relative im-
provement of tracking performance comparing CAI and EAI1
controllers is small in this case. Further practical improvement
by application of EAI2 controller seems questionable. One
can explain the above effects by the low signal-to-noise ratio
reached in this case (values in Table II denoted by a star mark
are highly uncertain), by the plant model uncertainty, and by
the small value of weightp4 which does not contribute much
relative to other terms present in signaluEAI2

FF .
For the reference frequencyωd = 2 rad/s, it is expected

upon the plot in Fig. 13 that CAI controller can provide
tracking performance comparable to the ZPE method. Evident
improvement should be seen only after application of EAI
controllers. These expectations are confirmed by the plots in
Fig. 12 and by values of the performance index in Table II.
Again, a relative tracking accuracy improvement obtained with
EAI2 control law seems to be rather slight when compared to
the case of EAI1 controller due to similar reasons mentioned
above.

VI. CONCLUDING REMARKS

Summarizing, worth to emphasize that the proposed
CAI/EAI feedforward controllers have a fixed weighted-linear-
combination structure. It means that the form of equation
(3) remains the same for all the plants, minimum- and
nonminimum-phase, with the same order of dynamics. This
property makes the new controllers especially simple for
industrial implementations when the current values of a refer-
ence trajectory and its time-derivatives are available. Ifthe ref-
erence time-derivatives are not available, it is still possible to
use CAI/EAI controllers by reconstructing the time-derivatives
e.g. with utilization of the so-called robust exact differentiators
introduced in [16], [17].

It has been shown that for sufficiently low frequency range a
tracking control accuracy attainable with the proposed method
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Results foryd(t) = sin(t)
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Results foryd(t) = sin(2t)
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Fig. 12. Plots of tracking errorse(t) in the linear and logarithmic scales together with amplitude spectra|EN (ω)| of tracking-error signals obtained on the
experimental testbed for the proposed CAI, EAI1, and EAI2 controllers and compared with three classical feedforward controllers NZI, ZME, and ZPE.

can be successively improved by increasing the degreeµ of
the feedforward controller polynomial. Practical limitation of
this reduction generally comes from three main reasons: a lack
of knowledge on higher-order time-derivatives of a reference
trajectory, a poor quality of a plant model, and the presence
of a measurement noise which inherently restricts ability of
tracking accuracy improvement below some ultimate level de-
termined by a signal-to-noise ratio. As illustrated in the paper,
the XAI controllers designed for sufficiently high polynomial
degreeµ may outperform the classical approximate-inverse
methods when applied to the nonminimum-phase dynamics
if a spectrum of a reference trajectory is included in a low-

frequency range. Like in the classical feedforward control
methods, the particular quantitative tracking improvement at-
tainable with XAI controllers substantially depends on relative
locations of poles and zeros of the considered plant dynamics.

At present, the proposed XAI feedforward controllers do not
have their counterparts for the plants described by discrete-
time models widely used in various applications due to sim-
plicity of their practical utilization. Applicability extension
of the proposed feedforward control method for discrete-time
systems remains an open research problem.
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nonminimum phase systems removes performance limitations. IEEE
Trans. Automatic Control, 50(2):234–239, 2005.

[2] M. R. Buehner and P. M. Young. Perfect tracking for non-minimum
phase systems. In2010 American Control Conf., pages 4010–4015,
Baltimore, USA, 2010.

[3] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch. The effect of
nonminimum-phase zero location on the performance of feedforward
model-inverse control techniques in discrete-time systems. In 2008
American Control Conf., pages 2696–2702, Seattle, USA, 2008.

[4] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch. Analysis and
comparison of three discrete-time feedforward model-inverse control
techniques for nonminimum-phase systems.Mechatronics, 22:577–587,
2012.

[5] J. De Caigny, B. Demeulenaere, J. Swevers, and J. De Schutter. Optimal
design of spline-based feedforward for trajectory tracking. In Proc. 2007
American Control Conference, pages 4524–4529, New York City, USA,
2007.

[6] P. H. Chang and G. R. Cho. Enhanced feedforward control ofnon-
minimum phase systems for tracking predefined trajectory.Int. J.
Control, 83(13):2440–2452, 2010.

[7] G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, and S. Devasia.A review
of feedforward control approaches in nanopositioning for high-speed
SPM. ASME J. Dyn. Sys. Meas. Cont., 131:1–19, 2009.

[8] S. Devasia. Should model-based inverse inputs be used asfeedforward
under plant uncertainty.IEEE Trans. Control Sys. Techn., 47(11):1865–
1871, 2002.

[9] M. M. Michałek. Simple causal fixed-structure feedforward control
law for general continuous-time LTI SISO systems. In2014 European
Control Conference (ECC), pages 61–66, Strasbourg, France, 2014.

[10] H. Garnier and L. Wang (Eds.).Identification of continuous-time models
from sampled data. Advances in Industrial Control. Springer-Verlag,
London, 2008.

[11] E. Gross and M. Tomizuka. Experimental flexible beam tiptracking
control with a truncated series approximation to uncancelable inverse
dynamics.IEEE Trans. Control Sys. Techn., 2(4):382–391, 1994.

[12] M. Heertjes and D. Bruijnen. MIMO FIR feedforward design for zero
error tracking control. In2014 American Control Conference (ACC),
pages 2166–2171, Portland, USA, 2014.

[13] J. B. Hoagg and D. S. Bernstein. Nonminimum-phase zeros. Much to
do about nothing.IEEE Control Systems Magazine, 27(3):45–57, 2007.

[14] A. Karimi, M. Butcher, and R. Longchamp. Model-free precompensator
tuning based on the correlation approach.IEEE Trans. Control Systems
Technology, 16(5):1013–1020, 2008.

[15] K.-S. Kim and Q. Zou. A modeling-free inversion-based iterative
feedforward control for precision output tracking of linear time-invariant
systems.IEEE/ASME Trans. Mechatronics, 18(6):1767–1777, 2013.

[16] A. Levant. Robust exact differentiation via sliding mode technique.
Automatica, 34(3):379–384, 1998.

[17] A. Levant. Higher-order sliding modes, differentiation and output-
feedback control.Int. J. Control, 76(9/10):924–941, 2003.

[18] H. Okajima and T. Asai. Performance limitation of tracking control
problem for a class of references.IEEE Trans. Automatic Control,
56(11):2723–2727, 2011.

[19] H.-S. Park, P.-H. Chang, and D.-Y. Lee. Trajectory planning for the
tracking control of systems with unstable zeros.Mechatronics, 13:127–
139, 2003.

[20] A. Pisano, S. Baev, D. Salimbeni, Y. Shtessel, and E. Usai. A new
approach to causal output tracking for non-minimum phase nonlinear
systems via combined first/second order sliding mode control. In
2013 European Control Conference (ECC), pages 3234–3239, Zürich,
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