A highly scalable path-following controller for N-trailers with off-axle hitching

Maciej Marcin Michałek

Chair of Control and Systems Engineering, Poznań University of Technology (PUT), Piotrowo 3A, 60-965 Poznań, Poland

This is the accepted author manuscript of the paper published in Control Engineering Practice 29:61-73, 2014, DOI: 10.1016/j.conengprac.2014.04.001

Abstract

The paper presents a highly scalable nonlinear cascaded-like path-following feedback controller for N-trailer robotic vehicles equipped with arbitrary number of off-axle hitched trailers. In contrast to the other path-following control laws proposed in the literature for N-trailer robots, the presented control approach does not require determination of the shortest distance to a reference path. By introducing the so-called segment-platooning reference paths, and under the sign-homogeneity assumption for hitching offsets, the asymptotic following is guaranteed for both constant- and varying-curvature reference paths using either backward or forward vehicle motion strategy with a guidance point fixed on the last trailer. The paper contains experimental results obtained with a 3-trailer laboratory-scale vehicle.

Keywords: cascaded-like control, path following, N-trailer, off-axle hitching

1. Introduction

The N-trailer vehicles (N-trailers), comprising of a tractor and passively interconnected trailers, are especially interesting systems of exceptional practical meaning [9, 21]. Three kinds of N-trailers with non-steerable axles are distinguished in the literature: Standard N-Trailers (SNT) equipped solely with on-axle joints (mounted on the preceding wheel-axles) [20, 25], non-Standard N-Trailers (nSNT) with all the joints of off-axle type (mounted off the preceding wheel-axles) [14, 32], and General N-Trailers (GNT) where the mixed on-axle and off-axle hitches are present in a vehicle chain [4, 29]. The path-following (PF) control problem for tractor-trailer vehicles has been addressed by numerous researchers within the last two decades. First, because the N-trailers are especially difficult to control as a consequence of their structural properties (see [4, 20, 35]). Second, the PF problem has an important practical meaning in the tasks where the motion geometry is a key factor, while time-execution of the task is secondary [1, 2].

Numerous works on the PF problem have been especially devoted to the robots with strictly limited number of trailers, see e.g. [7, 8, 13, 16, 18, 19, 21, 23, 27, 30, 41, 43, 46]. Feedback-control solutions to the PF problem for truly N-trailers (i.e. admitting arbitrary number of vehicle segments) have been proposed merely in a few works, namely in [48] for SNT robots, in [5, 6, 10] for GNT vehicles, in [9] for nSNT structures, and in [42] for the special kind of N-trailers with steerable axles. Control laws provided in the mentioned works result from application of different mathematical concepts, like the chained-form transformation [48], or various types of linearization [5, 6, 9, 10]. Despite their theoretical soundness and unquestionable elegance, they often provide relatively complex, only locally valid, or hardly scalable control laws, sometimes without clear physical interpretation of particular control components. Mentioned properties may cause serious problems with tuning and implementation of the controllers leading to unacceptable control performance in practical applications. Thus it seems, there is still a need for further investigations in this area to provide new solutions with improved functionality in the form of more practically oriented controllers characterized by application simplicity, acceptable performance, and scalability with respect to a number of trailers present in a vehicle (see the comments in [31, 36]).

Motivated by the above arguments, the author presents a highly scalable nonlinear cascaded-like control approach to the PF problem for the nSNT vehicles. A novelty of the proposed concept comes from a combination of two components. The first one is a cascade-like control structure which leads to a modular and highly scalable state-feedback controller, which is relatively simple in implementation. Scalability makes a structure and complexity of the new control law independent on the number of trailers attached in a vehicle. Although utilization of the cascaded-like control paradigm into N-trailers is not a completely new concept (it has been independently developed and presented for the backward pushing task in [36, 37], for the trajectory-tracking task e.g. in [14], and for set-point control in [17, 32]), it is applied here for a first time in the context of the PF problem. The second component is the relatively new PF control law originally developed for unicycle kinematics in [39], which will be applied in the outer loop of a cascade. The main advantage of the approach presented in [39] (cf. also [15]) comes from a new way of treating the PF control problem which removes fundamental limitations of the well known and widely utilized PF control method introduced for unicycle-like robots in [47] (in this context see also [3, 22, 24, 38, 49, 51, 55]). By defining the so-called segment-platooning (S-P) reference paths, the newly proposed control law guarantees asymptotic following of both constant-curvature and varying-curvature S-P reference paths using either backward or forward motion strategy of a vehicle, with a guidance point fixed on the last trailer. In the paper it will be explained in what sense the new control

This work was supported by the statutory grant No. 93/194/13 DS-MK

Email address: maciej.michalek@put.poznan.pl (Maciej Marcin Michałek)

Similar control concepts have found applications also in other areas of robotics, see e.g. [12, 28, 40].
natural text
where \(\sigma \) is a binary decision factor (design parameter), the meaning of which will be clarified in the sequel. According to [39], one assumes that function \(F(x,y) \) is well defined for \((x,y) \in \mathcal{D} \subset \mathbb{R}^2 \), i.e.: \(F(x,y) \) is bounded and at least twice differentiable ensuring existence of partial derivatives \(F_x(x,y) \equiv \partial F(x,y)/\partial x \), \(F_y(x,y) \equiv \partial F(x,y)/\partial y \), \(F_{xx}(x,y) \equiv \partial^2 F(x,y)/\partial x^2 \), \(F_{yy}(x,y) \equiv \partial^2 F(x,y)/\partial y^2 \), \(F_{xy}(x,y) \equiv \partial^2 F(x,y)/\partial x \partial y \), \(z_1, z_2 \in [x, y] \), and gradient \(\nabla F(x,y) = [F_x(x,y), F_y(x,y)] \) is non-zero: \(\| \nabla F(x,y) \| > 0 \) for \((x,y) \in \mathcal{D} \). Reference orientation

\[
\theta_d(x,y) \equiv \text{Atan2c}(−F_x(x,y), F_y(x,y)) \in \mathbb{R},
\]

(8)
determines tangent direction to reference path \((7)\) at point \((x,y)\), where Atan2c \((\cdot, \cdot) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R} \) is a continuous version of the four-quadrant function Atan2 \((\cdot, \cdot) : \mathbb{R} \times \mathbb{R} \mapsto (−\pi, \pi) \) introduced to preserve continuity of orientation error in \((10)\) (cf. Appendix A). Decision factor \(\sigma \) introduced in \((7)\), and included in partial derivatives \(F_x \) and \(F_y \), determines a desired tangent for reference orientation \(\theta_d(x,y) \) along the positional path. Formulas \((7)\) and \((8)\) determine a feasible reference path for unicycle kinematics respecting nonholonomic constraints imposed by \((2)\)^3.

Since the last trailer has been selected as a guidance segment, posture \(q_N \) can be treated as a generic output of system \((5)\)

\[
y \equiv q_N = [0_{3 \times N} \ 1 \ 0]_3 q = C q.
\]

(9)
As a consequence, the path-following error will be defined with respect to the generic output \(q_N \) as follows:

\[
e(q_N) \equiv \begin{bmatrix} F(q_N) \\ e_\theta(q_N) \end{bmatrix} \equiv \begin{bmatrix} \sigma f(x_N,y_N) \\ \theta_N - \theta_d(x_N,y_N) \end{bmatrix} \in \mathbb{R}^2,
\]

(10)
where \(x_N, y_N \) are position coordinates of guidance point \(P \) (cf. Fig. 1). Component \(F(q_N) \) in definition \((10)\) can be treated as a signed distance value \((\text{see [39]}\) determined between guidance point \(P \) and a reference path, since \(F(q_N) = 0 \) only if \(P \) is exactly on a reference path (however in general, \(F(q_N) \) is not the Euclidean distance). Component \(e_\theta(q_N) \) is the orientation error evaluated at \(q_N \). Evaluation of the PF error \((10)\) at any posture \(q_N \) does not require determination of the shortest distance to a reference path as it was needed in the classical approach to the PF problem introduced in [47]. This fact has substantial practical meaning, because determination of the shortest distance to a path of a general shape is the most difficult issue and limiting factor in practical applications of classical PF controllers.

Remark 1. Since a reference path defined by \((7)-(8)\) is feasible for unicycle kinematics, one may assume that there exist some nominal velocity functions \(\Phi^*_\omega, \Phi^*_v \) which guarantee perfect guidance of the unicycle along the reference path with a prescribed longitudinal velocity determined by \(\Phi^*_v \). In other words, there exist feedforward velocities \(\omega_N = \Phi^*_\omega, v_N = \Phi^*_v \) which applied into \((2)\) with \(t := N \) ensure that \(e(q_N(t)) = 0 \) for all \(t \geq 0 \) if \(q_N(0) \) is exactly on the path ("perfect output tracking" case). Functions \(\Phi^*_\omega, \Phi^*_v \) will be called hereafter the nominal guiding velocities.

Generic output \((9)\) and PF error \((10)\) strictly refer to the guidance segment only. For the purpose of stability analysis presented in Section 4.3 let us complement a set of reference signals with reference joint-angles \(\beta_i \), \(i = 1,...,N \), which are compatible with the reference path. Assume then, that for a given reference path described by \((7)-(8)\) there exist unique reference functions

\[
\beta_d(t) = [\beta_{d1}(t) \ldots \beta_{dN}(t)]^T \in \left[-\frac{\pi}{2} \ \frac{\pi}{2} \right]_2^N
\]

(11)
determine desired evolution of the vehicle joint angles for the case of "perfect output tracking" (cf. Remark 1). By combination of joint-angle dynamics from \((5)\) with iteratively applied formula \((4)\) it can be found that reference functions \((11)\) shall satisfy the following differential equation

\[
\beta_d = S_p(\beta_d) \sum_{j=1}^N J_j^{-1}(\beta_j)\Phi^*, \quad \Phi^* = [\Phi^*_\omega, \Phi^*_v]^T,
\]

(12)
where \(\Phi^* \) is the nominal guiding velocity. It is well known that for the constant-curvature reference paths (circular and rectilinear ones) the reference functions \(\beta_d(t) = \beta_{di} = \text{const} \forall i \), and for the rectilinear paths \(\beta_d = 0 \) (see [11, 35]). In the case of varying-curvature reference paths the nominal guiding velocity \(\Phi^* \) is non-constant implying that \(\beta_d(t) \) is a time-varying "steady-state" solution of \((12)\). Finding analytical forms of functions \((11)\) in the latter case is a non-trivial task (if at all possible), because NNT kinematics is not differentially flat for \(N > 1 \) (cf. [45]). However, it will be shown in the sequel that knowledge about explicit analytical forms of functions \((11)\) is not needed in our case, because angles \(\beta_d(t) \) will not be used in definition of the cascaded-like controller proposed in the paper.

3.2. Segment-platooning (S-P) reference paths

From a set of all possible constant- and varying-curvature reference paths, with reference joint angles \((11)\) being a solution of \((12)\), let us distinguish a subset of the so-called segment-platooning (S-P) reference paths, along which

\[
\forall t \geq 0 \quad v_{di-1}(t) \cdot v_{di}(t) > 0, \quad i = 1,...,N,
\]

(13)
where \(v_{di}(t) \) and \(v_{di-1}(t) \) denote the reference longitudinal velocities of, respectively, the \(i \)th and \((i-1)\)st vehicle segments along the reference path resulting from relation

\[
[\omega_{di}, v_{di}]^T \equiv J_1(\beta_{di})[\omega_{di-1}, v_{di-1}]^T \equiv \sum_{j=1}^N J_j^{-1}(\beta_{dj})\Phi^*,
\]

(14)
where \(\Phi^* = [\Phi^*_\omega, \Phi^*_v]^T \) denotes the nominal guiding velocity, and \([\omega_{AN}, v_{AN}]^T \equiv [\Phi^*_\omega, \Phi^*_v]^T \). Condition \((13)\) means that the reference longitudinal velocities of every two neighboring vehicle segments are non-zero and have the same signs along the reference path (all segments persistently move either backward or forward – segment-platooning persistently exciting reference motion). It can be shown (see Appendix B) that satisfaction of \((13)\) for reference joint angles \((11)\) is equivalent to geometrical condition

\[
\forall t \geq 0 \quad \tan \delta_{di}(t) > 1 > 0, \quad i = 1,...,N,
\]

(15)
where \(\delta_{di}(t) \) denotes a steering angle of the \(i \)th virtual steering wheel along a reference path\(^4\), while \(\tan \delta_{di}(t) = L_c\kappa_{di}(t) \) with \(\kappa_{di}(t) = \omega_{di}(t)/v_{di}(t) \) is a reference motion-curvature of the \(i \)th vehicle segment along a reference path (see Fig. 1). Most practically useful paths satisfy \((13)\). In particular:

\[^3\text{In spite of technical modifications resulting from inclusion of binary factor } \sigma \text{ in (7) and from using Atan2c (.,.) in (8), the above definition of a reference path conceptually corresponds to the original formulation presented in [39].}\]

\[^4\text{The concept of virtual steering wheels (VSW) has been introduced by Altamiri in [4]; VSW are denoted in Fig. 1 together with angles } \delta_i \text{ for exemplary motion conditions.}\]
I. Rectilinear paths always satisfy (13) because in this case $\alpha_i = \delta_i = 0$ for all $i = 1, \ldots, N$, and (15) is met for $t \geq 0$.

II. For circular paths, it can be shown that (see Appendix B) $v_{di-1} = v_{di} \cdot \rho_i$, where $\rho_i = (L_0 + L_0 \cdot \beta_{di})/(L_0 \cdot \beta_{di} + L_0)$. Thus (13) is satisfied if only $\rho_i > 0$, which in turn holds if:

\[(L_0 > 0) \land (|\beta_{di}| < \pi/2) \text{ for } i = 1, \ldots, N, \]

which is met for reference angles (11) under assumption A1, A2.

III. For curvature-varying paths, satisfaction of (13) generally holds for sufficiently smooth paths (without cusps), along which angles $\beta_{di}(t)$ and $\delta_i(t)$ either have the same signs or at least one of them is sufficiently small (to meet (15)) when they have opposite signs. In general, it is difficult to say a priori which exactly varying-curvature paths satisfy (13). However, for a particular considered reference path determined by (7)-(8), satisfaction of (13) can be easily checked before the vehicle motion (off-line) by solving numerically equation (12), and next by using transformation (14) for corresponding guiding velocity Φ_e^* (see Section 4.3 and plots in Fig. 3).

From now on, the S-P reference paths will be of our particular interest. It will be shown in Section 4.3 that desirable behavior of the vehicle chain (in the sense defined by (17)) can be guaranteed for the reference paths which are of the S-P type.

3.3 Control problem statement

Having defined the reference signals, let us state the path-following control (PFC) problem.

Definition 1 (PFC Problem). For kinematics (5), satisfying assumptions A1-A2, find a feedback control law $u_0(\beta, e(q_N), \cdot)$ which for the reference paths represented by (7)-(8) and (11) guarantees convergence of PF errors

\[\lim_{t \to \infty} F(q_N(t)) = 0, \quad \text{and} \quad \lim_{t \to \infty} e_0(q_N(t)) = 2\pi \eta, \quad \eta \in \mathbb{Z}, \]

entailing asymptotic stability of joint-angle error

\[\ddot{\beta} = \ddot{\beta}_d - \beta \text{ in the sense: } \lim_{t \to \infty} \dot{\beta}(t) = 0. \]

Equation (18) determines how the guidance-segment velocity $u_N = [\omega_N \ v_N]^T$ may be forced by the tractor input u_0. Since (18) is a purely algebraic mapping which depends only on the current joint-angles β, velocities of the last trailer can be instantaneously forced with the tractor control inputs. Equation (18) defines in fact a velocity transformation with feedback from angles $\beta(t)$, where u_N and u_0 can be treated, respectively, as an input and an output of the transformation.

Consider the guidance segment as the unicycle with virtual control input u_N (cf. (2)). Suppose that some feedback control function is given

\[\Phi(e, \cdot) = [\Phi_0(e, \cdot), \Phi_e(e, \cdot)]^T \in \mathbb{R}^2, \]

which, when directly applied into the unicycle input, ensures satisfaction of convergence conditions (16) for the reference path determined by (7)-(8). In contrast to classical approaches to the unicycle kinematics (see [39], which does not require determination of the instantaneous shortest distance to a path (in contrast to the classical approach introduced in [47]), this property is practically important, since finding the shortest distance to a path of a general shape may be difficult and computationally costly. Moreover, its unique determination requires that the initial position of a vehicle is constrained to a vicinity around a reference path, a size of which is smaller than a doubled absolute value of the smallest reference curvature-radius along the path. Control law proposed in [39] is free of the mentioned limitations.

Following [39], the outer-loop controller (19) can be defined as follows:

\[\Phi(e, v_d) \equiv \begin{bmatrix} \Phi_0(e, v_d) \\ \Phi_e(v_d) \end{bmatrix}, \]

with

\[\Phi_0(e, v_d) \equiv -k_1 \|\nabla F(q_N)\| \frac{k_2 F_s(q_N) F(q_N)}{\sqrt{1 + F_s^2(q_N)}} - k_1 |\Phi_0(v_d)| \left[F_s(q_N) \epsilon \theta_N + F_s(q_N) \delta \theta_N + \theta_d \right], \]

\[\Phi_e(v_d) \equiv v_d = \text{const}, \quad v_d \neq 0, \]

where $F_s(q_N) \equiv F_s(x_N, y_N), F_s(q_N) \equiv F_s(x_N, y_N), \text{coefficients}$

\[k_1 > 0, \quad k_2 \in (0, 1) \]

\[\text{Definition (22)-(23) is equivalent to the original formulation proposed in [39] for the special (but most common) case where } \Phi_e^* = v_d = \text{const.} \]
are the design parameters, and

$$\dot{\theta}_d = \Phi_d(v_d) \frac{F_1(q_N)c\theta_N + F_2(q_N)s\theta_N}{\|\nabla F(q_N)\|^2}, \quad (25)$$

$$F_1(q_N) = F_s(q_N)F_{xy}(q_N) - F_z(q_N)F_{xy}(q_N), \quad (26)$$

$$F_2(q_N) = F_s(q_N)F_{yz}(q_N) - F_z(q_N)F_{yz}(q_N). \quad (27)$$

For the purpose of further considerations and in order to indicate original properties of the PF controller (22)-(23) when it is directly applied into unicycle kinematics, let us recall the main result of work [39] in the form of a lemma.

Lemma 1 (upon [39], Th. 2). For the reference paths determined by (7)-(8), direct application of control functions (22)-(23) into unicycle kinematics (2) with $i = N$ by taking $\omega_N := \Phi_d(e, v_d)$ and $v_N := \Phi(e, v_d)$ guarantees convergence determined by (16) for any initial condition $e(q_0(0))$ with $(x_N(0), y_N(0)) \in \mathcal{D}$, outside the set of unstable equilibria: $[F(q_N) = 0, e_0 = (2\eta + 1)\pi] \in \mathbb{Z}$.

According to above result, it is not difficult to check that along the reference path $\Phi(0, v_d) = \Phi^* = [\Phi^x_N, \Phi^y_N]^T$ with nominal guiding velocities

$$\Phi^x_0 = \Phi^x_d(0, v_d) = v_d \frac{F_1(q_N)F_s(q_N) - F_2(q_N)F_z(q_N)}{\|\nabla F(q_N)\|^2}, \quad (28)$$

4.3. Main result

Proposition 1. Cascaded-like state-feedback PF controller

$$u_0(\beta_0, \Phi(e, v_d)) = \frac{1}{N} \sum_{j=1}^{N} J_j^{-1}(\beta_j) \Phi(e, v_d) \quad (29)$$

with $\Phi(e, v_d)$ defined by (21)-(23) solves PFC Problem for any initial condition $e(q_0(0))$ with $(x_N(0), y_N(0)) \in \mathcal{D}$ outside the set $F(q_N) = 0, e_0 = (2\eta + 1)\pi] \in \mathbb{Z}$, guaranteeing local asymptotic stability of point $\beta = 0$ for the S-P reference paths under the following conditions:

1. sgn$(v_d) = -$sgn(L_{β_0}), $\forall t \in \mathbb{Z}.$
2. $\forall t \geq 0 \|\Phi^x(t)\| \leq \delta_1$ and $\|\Phi^y(t)\| \leq \delta_2$ with sufficiently small constants $\delta_1, \delta_2 > 0$ for the case of varying-curvature reference paths.

It will be shown in the proof of Proposition 1 that conditions 1 and 2 are required solely to ensure asymptotic stability of joint-angle error (17) – they do not affect convergence (16) for PF error (10). Under restriction 1, the guidance segment can follow a reference path either backward if all L_{β_0} are positive, or forward if all L_{β_0} are negative, keeping location of the guidance point on the last trailer. Since velocity v_d is selected by a designer, it is always possible to make a selection which satisfies 1.1. Furthermore, the upper bounds imposed by condition 2 on the norm of nominal guiding velocity Φ^* and its time-variability concern only the varying-curvature reference paths. Condition 2 means that Proposition 1 admits the S-P varying-curvature reference paths which are sufficiently slow and smooth.

Figure 2 presents a block scheme which clarifies the proposed PF cascaded-like control structure for the nSNT robots. Reference path is uniquely determined by the form of function $F(x, y)$. The outer-loop PF controller is responsible for computing the instantaneous control function $\Phi(e, v_d)$ upon the current path-following error (10) and desired velocity v_d. Function $\Phi(e, v_d)$ determines instantaneous velocities, which would guide the last trailer toward (and then along) the reference path if $\Phi(e, v_d)$ is directly forced on virtual input u_N. The role of the inner-loop transformation is to on-line recompute velocity $\Phi(e, v_d)$ into instantaneous control input u_0 for the tractor segment upon the current values of vehicle joint angles β. Application of input $u_0(\beta, \Phi)$ into the tractor makes the last trailer move in a way as it would be directly driven by function $\Phi(e, v_d)$. Worth noting that the control structure in Fig. 2 remains valid regardless a number of trailers present in a vehicle chain. A change of the trailers number affects only a number of matrix-multiplications used in transformation (29). As a consequence, the proposed controller is highly scalable, and reconfiguration of the control program for different numbers of trailers can be easily automated.

Proof of Proposition 1. First, let us examine closed-loop behavior of the guidance segment. In the closed-loop system

$$u_N \overset{(29)}{=} \frac{1}{N} \sum_{j=1}^{N} J_j^{-1}(\beta_j) \Phi(e, v_d) = \Phi(e, v_d). \quad (30)$$

Hence, application of control law (29) makes the guidance segment move in a way as it would be directly controlled by the outer-loop function $\Phi(e, v_d)$. Now, one can apply Lemma 1 to conclude that control law (29) guarantees satisfaction of (16) for initial conditions $e(q_0(0))$ constrained to the domain prescribed in Proposition 1 (outer-loop dynamics inherit properties of the PF control loop proposed in [39]). The above conclusion is valid for both constant-curvature as well as varying-curvature reference paths.

Second, let us show boundedness of control function (29). Claiming the boundedness of the PF control law proposed in [39], one infers

$$\forall t \geq 0 \|\Phi(e(q(t), v_d))\| \leq \phi_{\max} < \infty, \quad (30)$$

and in turn

$$\|u_0(\beta, \Phi)\| \overset{(29)}{=} \frac{1}{N} \sum_{j=1}^{N} J_j^{-1}(\beta_j) \Phi(e, v_d) \leq \frac{1}{N} \sum_{j=1}^{N} M_j \phi_{\max} < \infty, \quad (30)$$

where the norm $M_j = \sqrt{(1 + L_2^2\mu_j^2)(\mu_j^2 + L_2^2)}$, $\phi_{\max} = 1/L_{\beta_0}$, of matrix $J_j^{-1}(\beta_j)$ is bounded under assumption A1.

Next, we shall consider stability of the joint-angles error dynamics in the closed-loop system. To this aim, let us provide
some useful auxiliary relations which can be obtained by direct computations:

\[
\begin{align*}
\Gamma_i(\beta_{di}) \equiv & J_i(\beta_{di}) - \Phi(\sigma_{di}, v_{di}) \Phi(\sigma_{di}, v_{di})^T, \\
\Gamma_i(\beta_i) \equiv & J_i(\beta_i) - \Phi(\sigma_i, v_i) \Phi(\sigma_i, v_i)^T, \\
J_i^{-1}(\beta_i) \equiv & J_i^{-1}(\beta_i) - \Phi(\sigma_i, v_i) \Phi(\sigma_i, v_i)^T. \\
\end{align*}
\]

where

\[
R_{h}(\beta_i) \equiv \begin{bmatrix} \overline{c_i} \beta_i - L_{h} \overline{\beta_i} \overline{c_i} \beta_i \\ \overline{c_i} \beta_i \end{bmatrix}, \quad R_{h}(\beta_i) \equiv \begin{bmatrix} \overline{c_i} \beta_i - L_{h} \overline{\beta_i} \overline{c_i} \beta_i \\ \overline{c_i} \beta_i \end{bmatrix},
\]

and \(R_{h}(0) = R(0) = I\). Define the outer-loop control difference

\[
\Phi \equiv \Phi - \Phi(\sigma, v_i)
\]

where \(\Phi = [\Phi_0, \Phi_1]^T = \Phi(0, v_{di})\) with components resulting from (28). Taking a time-derivative of error \(\beta\) defined in (17), and then utilizing (5), (12), and (34) allows one to write the joint-error dynamics in the following form:

\[
\dot{\beta} = S_{h}(\beta_i) \frac{N}{j=1} \int J_i^{-1}(\beta_{di}) \Phi(\sigma_{di}, v_{di}) \frac{N}{j=1} \int J_i^{-1}(\beta_{di}) \Phi(\sigma_{di}, v_{di}).
\]

It is clear that the pair \((\bar{\beta} = 0, \Phi = 0)\) is an equilibrium of dynamics (35). Recalling the form of matrix \(S_{h}\) (cf. (6)) and by utilizing formulas (31)-(33) one can obtain dynamics of the \(i\)th joint-angle error

\[
\dot{\beta}_{i} = f_{i}(\beta_{i}, \beta, \Phi^{*}) + g_{i}(\beta_{i}, \beta, \Phi), \quad i = 1, \ldots, N,
\]

where

\[
\beta_{i} \equiv [\beta_{i}, \beta_{i+1} \ldots \beta_{i+N}]^T.
\]

and

\[
\begin{align*}
&f_{i} = c^{T}(I - J_{i}(\beta_{di})) \frac{N}{j=1} \int J_{i}^{-1}(\beta_{di}) \Phi_{i}^{*}, \\
&- c^{T}(I - J_{i}(\beta_{di}) \Phi(\sigma_{di}, \beta_{di})), \frac{N}{j=1} \int J_{i}^{-1}(\beta_{di}) \Phi(\sigma_{di}, \beta_{di})^{*}, \\
&g_{i} = c^{T}(I - J_{i}(\beta_{di}) \Phi(\sigma_{di}, \beta_{di})), \frac{N}{j=1} \int J_{i}^{-1}(\beta_{di}) \Phi(\sigma_{di}, \beta_{di})^{*},
\end{align*}
\]

Upon the forms of functions (38)-(39) one can recognize the upper-triangular structure of equation (35). For the purpose of stability analysis, let us linearize (35) at equilibrium \((\bar{\beta} = 0, \Phi = 0)\) treating \(\beta\) as a state, and \(\Phi\) as an input. We obtain:

\[
\dot{\beta} = A(\beta_{di}, \Phi^{*}) \dot{\beta} + B(\beta_{di}) \Phi,
\]

with

\[
A(\beta_{di}, \Phi^{*}) = \begin{bmatrix} a_{11} & a_{12} & \ldots & a_{1N} \\ 0 & a_{22} & \ldots & a_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & a_{NN} \end{bmatrix}, \quad B(\beta_{di}) = \begin{bmatrix} b_{1}^{T} \\ \vdots \\ b_{N}^{T} \end{bmatrix},
\]

where diagonal elements of matrix \(A(\beta_{di}, \Phi^{*})\) are

\[

da_{ii} = \frac{\text{sgn}(v_{di} - t)}{L_{di}}, \quad i = 1, \ldots, N - 1, \quad (42)
\]

\[
da_{NN} = \frac{\text{sgn}(v_{di} - t)}{L_{di}} \Phi^{*}, \quad (43)
\]

the non-zero off-diagonal elements take the form

\[
da_{il} = \left[1 + \frac{L_{fr}^{2}}{L_{fr}} \right]^{-\frac{1}{2}} \int J_{i}^{-1}(\beta_{di}) \int_{j=1}^{N} J_{i}^{-1}(\beta_{di}) \Phi^{*}, \quad i = 1, \ldots, N - 1, \quad (44)
\]

for \(i = 1, \ldots, N - 1, \quad i = 1, \ldots, N\), and the \(i\)th row of \(B(\beta_{di})\) is

\[
b_{i}^{T} = \left[1 + \frac{L_{fr}^{2}}{L_{fr}} \right]^{-\frac{1}{2}} \int J_{i}^{-1}(\beta_{di}), \quad i = 1, \ldots, N.
\]

Linear system (40) locally approximates internal dynamics of the closed-loop system. Under the ‘perfect output tracking’ conditions, i.e. for \(e(q_{N}) = 0\) and \(\Phi = 0\), system (40) takes the form

\[
\dot{\beta} = A(\beta_{di}, \Phi^{*}) \dot{\beta}
\]

and locally approximates zero-dynamics of the closed-loop system. Stability of dynamics (45) at \(\beta = 0\) results from properties of matrix \(A\). Since \(A(\beta_{di}, \Phi^{*})\) has the upper-triangular structure, the eigenvalues \(\lambda(A), i = 1, \ldots, N\) are equal to its diagonal elements. Recalling (42)-(43) and (14) one can find

\[
a_{ii} = \frac{\text{sgn}(v_{di} - t)}{L_{di}} \left| v_{di} - t \right| / L_{di} \leq -\alpha, \quad (46)
\]

where

\[
\alpha = \min_{i = 1, \ldots, N} \left\{ \text{inf}_{v_{di} \geq 0} \left| v_{di} - t \right| / L_{di} \right\} > 0. \quad (47)
\]

Hence, (46)-(47) indicate that all the eigenvalues of matrix \(A(\beta_{di}, \Phi^{*})\) are real-negative for any S-P reference path.

For the constant-curvature S-P reference paths (rectilinear and circular ones) the reference angles \((11), velocity \Phi^{*}\), and all reference velocities \(v_{di}, i = 0, \ldots, N\), are constant (cf. (14)), thus matrix \(A(\beta_{di}, \Phi^{*})\) becomes time-invariant. In this case, local exponential stability of zero-dynamics (45) at \(\beta = 0\) results directly from (46)-(47).

In the case of curvature-varying reference paths, the reference angles \((11), velocity \Phi^{*}\), and reference velocities \(v_{di}, i = 0, \ldots, N\), are generally varying in time. As a consequence, \(A(\beta_{di}, \Phi^{*}(t)) = A(t)\) and asymptotic stability analysis for LTV system (45) is more involving. In this case, one can utilize a result recalled in Appendix A in the form of Lemma 2, which provides sufficient stability conditions for LTV systems. Let us analyze satisfaction of all the conditions required by Lemma 2.

Recalling the form of matrix \(A(\beta_{di}, \Phi^{*}(t))\) in (41) and components (42)-(44) it is evident that \(\left| a_{ii}(\beta_{di}, t), \Phi^{*}(t)\right| < \bar{\alpha} < \infty, \quad i, j = 1, \ldots, N\), for all \(t \geq 0\) under assumption A1 and by using (30) for \((\Phi(0, v_{di}) = \Phi^{*}.\) As a consequence,

\[
\| A(\beta_{di}, \Phi^{*}(t))\| < \bar{\alpha} < \infty, \quad \forall \ t \geq 0.
\]

Since (46)-(47) hold also for the varying-curvature S-P reference paths we have \(\lambda_{i}(A(\beta_{di}, \Phi^{*}(t))) \leq -\alpha, \quad i = 1, \ldots, N\), and it remains to analyze time-variability of matrix \(A(\beta_{di}(t), \Phi^{*}(t))\). To this aim, one can write \(\dot{a}_{ii}(\beta_{di}, t), \Phi^{*}(t) = \dot{a}_{ii}^{\beta_{di}} \beta_{di} + \dot{a}_{ii}^{\Phi^{*}} \Phi^{*}\).
it turns out that selection of \(\sigma \) (Remark 2. with the errors plotted in Fig. 3 asymptotically tend to zero both for all reference velocities \(v \)). Both reference paths have been defined by taking \(L \) using the common parameters: \(\sigma \) corresponds to true reference velocities along the path).

Under assumption A1 and using (30) one claims (cf. (42)-(44)):

\[
\| \sigma_{\beta ij} \| \leq \delta_{\beta ij} < \infty, \quad \| a_{\beta i j} \| \leq \delta_{\alpha ij} < \infty. \tag{48}
\]

Recalling (12) one can (conservatively) assess

\[
\left\| \beta_{\delta} \right\| \leq \left\| S_{\delta}^{(\beta_{\delta})} \right\| \prod_{j=1}^{N} J_{j}^{-1}(\beta_{\delta j}) \| \Phi^* \| \leq \delta_{\theta} \| \Phi^* \|, \tag{49}
\]

where \(0 < \delta_{\theta} < \infty \) under assumption A1 and due to the form of matrix (6). Now, under condition c2 and according to (48)-(49) we can write

\[
\forall t \geq 0 \left[\delta_{\beta ij}(t), \Phi^*(t) \right] \leq \delta_{\beta ij} \delta_{\varphi} \delta_{1} + \delta_{\alpha ij} \delta_{2} < \infty,
\]

and consequently (with \(\| \cdot \| \) denoting a spectral norm, [50])

\[
\forall t \geq 0 \left\| \delta_{\beta}(t), \Phi^*(t) \right\| \leq N \max_{i,j} \left[\delta_{\beta ij}(t), \Phi^*(t) \right] \leq N \left(\delta_{\beta ij} \delta_{\varphi} \delta_{1} + \delta_{\alpha ij} \delta_{2} \right), \tag{50}
\]

where \(\varphi_{\beta ij} = \max_{i,j}(\delta_{\beta ij}) \) and \(\varphi_{\alpha ij} = \max_{i,j}(\delta_{\alpha ij}) \). Now, the right-hand side of inequality (50) can be made small enough to satisfy (C.1) by providing sufficiently small constants \(\varphi_{1} \) and \(\varphi_{2} \) (as in condition c2), and consequently guaranteeing local exponential stability of (45) at \(\beta = 0 \) in the case of varying-curvature reference paths. Worth noting that (50) is fairly conservative, because it expresses the sufficient but not necessary condition for stability of (45), see [56].

In order to validate theoretical forecasts formulated in Proposition 1, and formally considered in the Proof, two sets of simulation results have been presented in Fig. 3. The plots illustrate time evolution of path-following errors, joint-angle errors, and reference longitudinal velocities in two cases: for the constant-curvature (circular) path, and for the varying-curvature (elliptical) reference path. Reference joint angles (11) were computed by numerical integration of equation (12) substituting \(\Phi^* := [\beta_{ij}, v_{ij}]^T \) and taking \(\beta_{ij}(0) = 0 \), while reference velocities \(v_{ij}(t) \) were computed upon\(^8\) (14). The results have been obtained for the nS3T kinematics selecting \(q(0) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]^T \), and using the common parameters: \(L_{0} = 0.25 \text{ m}, L_{0} = 0.04 \text{ m}, i = 1, 2, 3, v_{d} = -0.3 \text{ m/s}, \sigma = -1 \), and \(k_{1} = 2, k_{2} = 1 \). Both reference paths have been defined by taking \(f(x, y) := (x^2/A^2) + (y^2/B^2) - 1 \) with \(A = B = 1 \) for the circular path, and \(A = 2, B = 1 \) for the elliptical one. Worth stressing that all the errors plotted in Fig. 3 asymptotically tend to zero both for constant-curvature as well as for varying-curvature reference path (see also [33]). The plots in the last column in Fig. 3 reveal that in both cases the reference paths are of S-P type, since all reference velocities \(v_{ij}(t) \) have a common sign compatible with \(v_{ij} \equiv \Phi_{v} \). \(v_{d} = -0.3 \text{ m/s} \).

Remark 2. According to work [39], factor \(\sigma \) in (7) determines only a sign of function \(F(x, y) \) and, as a consequence, the quadrants in which reference orientation (8) is defined. However, it turns out that selection of \(\sigma \in \mathbb{R} \setminus \{0\} \) (in contrast to the binary set introduced in (7)) allows rescaling function \(F(x, y) \) and gradient \(\nabla F(x, y) \), influencing in this way the convergence rate of PF errors (10). In this context, component \(F(q_{N}) \) in (10) for \(|\sigma| \neq 1 \) shall be treated now as the scaled signed distance value, while \(|\sigma| \) can be used as an additional design parameter, helping one shape transient states in the closed-loop system. Exemplary plot of surface \(F(x, y) = \sigma f(x, y) \) for different values of factor \(\sigma \).}

\(^8\)Since \(\delta_{\theta}(q_{N}(t)) = \Phi_{v}(0, v_{d}) \) as \(t \to \infty \), signals \(v_{d}(t) \) computed numerically include transient components which are negligibly small after about 13 seconds in case of simulations shown in Fig. 3 after this time \(v_{d}(t) \) well corresponds to true reference velocities along the path.
with respect to values/signs of hitching offsets present in a vehicle chain. The 'ghost-vehicle' approach seems admit arbitrary hitching offsets, however it suffers from substantial complexity (low scalability) of controller equations, and was analyzed in [10] only for $N \leq 2$.

Especially beneficial properties of the cascaded-like controller have been highlighted in bold in the last column. Since the new control law does not utilize the linearization concept, it can be globally well defined if only a reference path is such that $\nabla V(x,y) \parallel \nabla F(x,y) > 0$ (in contrast to comparable controllers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of considered vehicles</td>
<td>GNT</td>
<td>GNT (asymptotic for $N = 2$)</td>
<td>nSNT</td>
<td>nBN7</td>
</tr>
<tr>
<td>Considered hitching offsets</td>
<td>$L_i > 0$ for [6] or $l_{in,thr}$ for [9]</td>
<td>$L_i > 0$ or $l_{in,thr}$ for $N = 2$ or $N = 4$</td>
<td>$L_i > 0$ or $l_{in,thr}$ or $v_{y,thr}$ if $i = 0$</td>
<td>$L_i > 0$ or $l_{in,thr}$ or $v_{y,thr}$ if $i = 0$</td>
</tr>
<tr>
<td>Allowable motion strategy</td>
<td>F (forward) or B (backward)</td>
<td>F (forward) or B (backward)</td>
<td>F or B for $v_{y} = 0$ or $L_i > 0$</td>
<td>F or B for $v_{y} = 0$ or $L_i > 0$</td>
</tr>
<tr>
<td>Guidance point location</td>
<td>LT = last trailer TR = tractor</td>
</tr>
<tr>
<td>Locality of control law definition</td>
<td>determined by linearization equations and path curvature</td>
<td>determined by linearization equations and path curvature</td>
<td>determined by linearization equations and path curvature</td>
<td>results only from points where $TF(x,y) > 0$ (can be avoided)</td>
</tr>
<tr>
<td>Stability</td>
<td>local, asymptotic</td>
<td>local, asymptotic</td>
<td>local, asymptotic</td>
<td>local, asymptotic</td>
</tr>
<tr>
<td>Determination of the shortest distance to the reference path</td>
<td>needed for all the vehicle segments</td>
<td>needed for the guidance segment</td>
<td>needed for the guidance segment</td>
<td>not needed</td>
</tr>
<tr>
<td>Controller tuning</td>
<td>simple</td>
<td>simple</td>
<td>simple</td>
<td>very simple</td>
</tr>
</tbody>
</table>

Figure 6: Qualitative comparison of the proposed cascaded-like control law with alternative PF control methods devised for N-trailers with off-axle hitching
which are generically local). Only the proposed controller admits varying-curvature reference paths, simultaneously not requiring determination of the shortest distance to the path. Thanks to the cascade-like structure, scalability of the proposed controller is high. It means that complexity of equation (29) does not depend on a number of trailers present in a vehicle chain (in contrast to the controllers with low scalability, which have to be analytically resolved for the particular number of trailers). Control performance guaranteed for the guidance segment and tuning simplicity of the control law are fully inherited from the outer-loop controller designed for unicycle kinematics in [39]. It makes the tuning process for the N-trailer as simple as for the unicycle preserving original control performance for the guidance segment (it explains description ‘very simple’ in the last row in Fig. 6). On the other hand, resultant control performance obtainable with linearization-based controllers substantially depends on poles location of the closed-loop dynamics; in this context, some practical difficulties with tuning of the controllers were reported in [9] and [10].

Practical restrictions of the proposed controller results from the fact that a reference path must be expressed by equation (7). Hence, directly available control input to the tractor is a vector

$$\Omega_d = \begin{bmatrix} \omega_{dR} \\ \omega_{dL} \end{bmatrix} = P u(t, \beta, \Phi), \quad P = \begin{bmatrix} \frac{\sqrt{A}}{2} & 0 \\ -\frac{\sqrt{A}}{2} & 1 \end{bmatrix}, \quad (51)$$

where ω_{dR} and ω_{dL} denote desired angular velocities for the right and left tractor wheel, respectively, $u(t, \beta, \Phi)$ has been defined by (29), while $b = 0.15$ m and $r \approx 0.029$ m are the tractor wheel base and the tractor wheel radius, respectively (cf. Fig. 1). To take into account actuator limits of the tractor, assume that $|\omega_{dR}(t)|$ and $|\omega_{dL}(t)|$ should not exceed in practice some prescribed bound ω_M for all $t \geq 0$. To address this limit the following scaling procedure has been applied:

$$\Omega_{ds}(t) \triangleq \frac{\Omega_d(t)}{s(t)}, \quad s(t) \triangleq \max \left\{ 1; \frac{\omega_{dR}(t)}{\omega_M}; \frac{\omega_{dL}(t)}{\omega_M} \right\} \quad (52)$$

where $s(t)$ is a scaling function such that $s(t) \geq 1$ for all $t \geq 0$. Procedure (52) guarantees that components of scaled angular velocity $\Omega_{ds}(t)$ satisfy prescribed bound ω_M for all $t \geq 0$, simultaneously preserving desired motion curvature of a tractor. Scaled velocities of the tractor segment may be retrieved by inverse relation to (51), namely: $u_{ds}(\beta, \Phi) = [\omega_{ds}, v_0]^\top = P^{-1} \Omega_{ds} = u(t, \beta, \Phi)/s(t)$, where the last equality results from combination of (52) and (51).

5. Experimental verification

5.1. Brief description of the experimental vehicle

Figure 7 presents the laboratory-scale articulated robotic vehicle used in experiments. The vehicle consists of a differentially driven tractor and up to three passive trailers of lengths $L_i = 0.229$ m, $i = 1, 2, 3$. Joint angles are measured by 14-bit absolute encoders. Localization of the guidance segment is possible by an external vision system thanks to the active LED marker mounted on the last trailer. The vehicle has been equipped with TMS320F28335 digital signal processor allowing for computations of control law (29) entirely on a vehicle board with frequency $f_s = 100$ Hz.

Angular velocities of tractor wheels are directly controlled by two PI-type velocity control loops implemented on the board. Hence, directly available control input to the tractor is a vector

$$\Omega_d = \begin{bmatrix} \omega_{dR} \\ \omega_{dL} \end{bmatrix} = P u(t, \beta, \Phi), \quad P = \begin{bmatrix} \frac{\sqrt{A}}{2} & 0 \\ -\frac{\sqrt{A}}{2} & 1 \end{bmatrix}, \quad (51)$$

where ω_{dR} and ω_{dL} denote desired angular velocities for the right and left tractor wheel, respectively, $u(t, \beta, \Phi)$ has been defined by (29), while $b = 0.15$ m and $r \approx 0.029$ m are the tractor wheel base and the tractor wheel radius, respectively (cf. Fig. 1). To take into account actuator limits of the tractor, assume that $|\omega_{dR}(t)|$ and $|\omega_{dL}(t)|$ should not exceed in practice some prescribed bound ω_M for all $t \geq 0$. To address this limit the following scaling procedure has been applied:

$$\Omega_{ds}(t) \triangleq \frac{\Omega_d(t)}{s(t)}, \quad s(t) \triangleq \max \left\{ 1; \frac{\omega_{dR}(t)}{\omega_M}; \frac{\omega_{dL}(t)}{\omega_M} \right\} \quad (52)$$

where $s(t)$ is a scaling function such that $s(t) \geq 1$ for all $t \geq 0$. Procedure (52) guarantees that components of scaled angular velocity $\Omega_{ds}(t)$ satisfy prescribed bound ω_M for all $t \geq 0$, simultaneously preserving desired motion curvature of a tractor. Scaled velocities of the tractor segment may be retrieved by inverse relation to (51), namely: $u_{ds}(\beta, \Phi) = [\omega_{ds}, v_0]^\top = P^{-1} \Omega_{ds} = u(t, \beta, \Phi)/s(t)$, where the last equality results from combination of (52) and (51).

5.2. Results and comments

Two experiments, E1 and E2, have been conducted to illustrate control performance for varying-curvature S-P reference paths. The following common parameters have been selected for both tests: $L_0 = 0.048$ m, $i = 1, 2, 3$, $v_d = -0.05$ m/s, and $\omega_M = 10$ rad/s. Experiment E1 was carried out using the elliptical reference path by taking $\sigma = +1$ and $f(x, y) \triangleq (x^2/A^2) + (y^2/B^2) - 1$ with $A = 0.7$ and $B = 0.5$. The outer-loop controller was implemented with design coefficients $k_1 = 2$ and $k_2 = 1$. Experiment E2 was performed for the sine-shaped reference path by taking $\sigma = -1$ and $f(x, y) \triangleq y = B \sin(Ax)$ with $A = 5.0$ and $B = 0.3$. In this case the outer-loop controller was implemented with design coefficients $k_1 = 20$ and $k_2 = 1$.

The results of experiments E1 and E2 are presented in Figs. 8 and 9, respectively. Apart from illustration of the robot motion in a task space, also the time plots of path-following errors F, $e_{\theta i}$, joint angles β_i, $i = 1, 2, 3$, scaled tractor velocities ω_{ds}, v_0, and guidance-segment velocities ω_s, v_j have been shown. Worth noting that initial positions of the guidance segment in the two experiments were selected in a much larger distance to the reference path than it would be admissible for the classical PF control approach proposed in [47] and commonly used for N-trailers, cf. [5, 6, 9, 10, 48]. Worth stressing smooth motion of the guidance segment, and stable evolution of the joint angles.

Robustness of the closed-loop system to parametric uncertainty of a vehicle kinematic model has been experimentally tested along the sine-shaped reference path, assuming both overestimated and underestimated values of trailer lengths and hitching offsets used in the inner-loop transformation (29). The results are presented in Fig. 10, where paths drawn by the guidance segment and time plots of PF error components $|f(q_0(t))|$
and $|e_n(t)|$ have been shown for the following cases: (a) using the nominal values of kinematic parameters and taking $\sigma = -4$, (b) using 10% overestimated trailers lengths and 10% underestimated hitching offsets, and taking $\sigma = -4$, (c) using 10% underestimated trailers lengths and 10% overestimated hitching offsets, and taking $\sigma = -4$, (d) using the same conditions as in case (b) but taking $\sigma = -8$. Comparing the plots in Fig. 10 one may claim relatively small sensitivity of the control system to parametric uncertainty of the vehicle model. Moreover, comparing the results for cases (b) and (d) one can see that increasing a value of $|\sigma|$ leads to improvement of the overall control performance despite the parametric uncertainty of the kinematic model.

6. Conclusions

The nonlinear cascaded-like state-feedback control law presented in the paper constitutes an alternative solution to the PF task for nSNF vehicles, where the reference paths can be expressed in the analytical form represented by (7). Thanks to utilization of the concept developed in [39], the proposed control law does not require determination of the shortest distance to a reference path, substantially simplifying practical application of the controller. By introducing of the so-called segment-platooning reference paths, it has been shown that the cascaded-like controller guarantees asymptotic following of both constant-curvature as well as some persistently exciting and sufficiently smooth varying-curvature reference paths. High scalability of the proposed controller allows its immediate application into N-trailers equipped with different numbers of sign-homogeneously off-axle hitched trailers. The novel control strategy admits either backward or forward motion of a vehicle (as a function of hitching offset signs), preserving location of the guidance point on the last trailer for both cases. Experimental results provided in the paper illustrated practical effectiveness of the new control law revealing its relatively small sensitivity to parametric uncertainty of a vehicle kinematic model.

Appendix A. Computation of function Atan2c (\cdot, \cdot), [17]

Angle $\chi(t) = \text{Atan2c}(h_1(t), h_2(t)) \in \mathbb{R}$ for all $t \geq 0$ corresponds to a value of integral $\chi(t) = \chi(0) + \int_0^t [h_1(\xi)h_2(\xi) - h_2(\xi)h_1(\xi)]/[h_1^2(\xi) + h_2^2(\xi)]d\xi$ computed for appropriately selected initial condition $\chi(0)$. In the discrete-time domain $n \in \mathbb{N}$, a value of angle $\chi(n) = \text{Atan2c}(h_1(n), h_2(n))$ can be computed as follows:

1: $X(n) := \text{Atan2}(h_1(n), h_2(n)) \in (-\pi, \pi]$
2: $X(n - 1) := \text{Atan2}(\sin \chi(n - 1), \cos \chi(n - 1)) \in (-\pi, \pi]$
3: $\Delta X(n) := X(n) - X(n - 1)$
4: IF $\Delta X(n) > +\pi$ THEN $\Delta \chi(n) := \Delta X(n) - 2\pi$
ELSEIF $\Delta X(n) < -\pi$ THEN $\Delta \chi(n) := \Delta X(n) + 2\pi$
ELSE $\Delta \chi(n) := \Delta X(n)$
5: $\chi(n) := \chi(n - 1) + \Delta \chi(n) \Rightarrow \chi(n) \in \mathbb{R}$

where $\chi(n - 1)$ denotes a value from a previous time instant which should be stored in a memory.
Appendix B. Some explanations for S-P paths

Let us show equivalence between conditions (13) and (15). Since \(\tan \beta_i(t) = \frac{\omega_i(t)}{v_i(t)} \) and curvature \(\kappa_i(t) = \frac{\omega_i(t)}{r_i(t)} \), one may rewrite (15) as \(L_i \omega_i(t) v_i(t) \tan \beta_i(t) + \frac{v_i^2(t)}{2} > 0 \). Upon (11) we have \(\| \beta_i(t) \| < \pi/2 \), thus the latter inequality can be multiplied by \(\cos \beta_i(t) \) and reformulated as \(v_i(t) L_i \omega_i(t) \sin \beta_i(t) + \frac{v_i(t) \omega_i(t)}{r_i(t)} > 0 \). Since \((L_i \omega_i(t) \sin \beta_i(t) + \frac{v_i(t) \cos \beta_i(t)}{r_i(t)}) = v_{di-1}(t) \) (according to (14) and (4)), hence condition (15) is equivalent to relation (13).

We are going to derive a relation between reference velocities \(v_{di} \) and \(v_{di-1} \) for the case of circular reference paths. It is known that for the steady-state circular motion of the N-trailer the following two equalities are valid (see [35]): \(\omega_i = \frac{v_{di} - \lambda_i \kappa_i \beta_i}{r_i} \) and \(v_{di-1} = \frac{v_{di} - \omega_i \kappa_i \beta_i}{c_i \beta_i} \). Combining the two equations yields \(\omega_i = \frac{(v_{di} \sin \beta_i) / (L_i + L_i \cos \beta_i)}{1/c_i \beta_i} \). By substituting the latter into the second row of propagation formula \(u_{di-1} = \mathbf{J}^{-1}(\beta_i) u_{di} \) (cf. (4)) gives relation \(v_{di-1} = v_{di} \cdot (L_i + L_i \cos \beta_i) / (L_i + L_i \cos \beta_i + L_i) \).

Appendix C. Stability lemma for LTV systems

Following [44] and [56] let us recall the useful stability lemma for LTV systems, which has been slightly reformulated here for the case of matrices possessing only real eigenvalues.

Lemma 2. Consider the LTV system \(\dot{x} = A(t)x \) where \(A(t) : \mathbb{R}_+ \to \mathbb{R}^{n \times n} \) has solely real eigenvalues \(\lambda_i(A(t)), t = 1, \ldots, n \). Assume that there exists \(\alpha > 0 \) such that \(\| A(t) \| \leq \bar{A} \) for all \(t \geq 0 \), and there exists a constant \(\alpha > 0 \) such that \(\lambda_i(A(t)) \leq \bar{A} \) for all \(t \geq 0 \) and all \(i = 1, \ldots, n \). The sufficient condition for exponential stability of LTV system at \(x = 0 \) is the existence of sufficiently small constant \(\delta_A > 0 \) such that

\[
\forall t \geq 0 \quad \| \dot{A}(t) \| \leq \delta_A.
\] (C.1)

The above lemma provides the sufficient condition (not the necessary one), thus (C.1) may be conservative (cf. [56]).

Acknowledgement 1. The author is indebted to Dr. Eng. Marcin Kiełczewski from Chair of Control and Systems Engineering (PUT) for a help in collecting the experimental data. He also thanks for critical and motivating comments provided by the anonymous reviewers.

References

Figure 10: Robustness tests: paths drawn by the guidance segment and logarithmic plots of FF error components obtained for sine-shaped reference path under nominal conditions – case (a), and in the presence of 10% parametric uncertainty of a vehicle kinematic model – cases (b) to (d), see Section 5.2.

