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(Accepted June 15, 2011. First published online: July 25, 2011)

SUMMARY
The paper introduces a novel general feedback control
framework, which allows applying the motion controllers
originally dedicated for the unicycle model to the motion
task realization for the car-like kinematics. The concept is
formulated for two practically meaningful motorizations:
with a front-wheel driven and with a rear-wheel driven.
All the three possible steering angle domains for car-
like robots—limited and unlimited ones—are treated.
Description of the method is complemented by the formal
stability analysis of the closed-loop error dynamics. The
effectiveness of the method and its limitations have been
illustrated by numerous simulations conducted for the three
main control tasks, namely, for trajectory tracking, path
following, and set-point regulation.

KEYWORDS: Wheeled mobile robots; Kinematics;
Feedback control.

1. Introduction
The most popular kinematic structures of wheeled mobile
robots used in practice are the unicycle and car-like
models.17, 18, 20, 35 Designing the feedback motion controllers
has been usually done separately for the two of mentioned
kinematics. Due to simplicity and the special geometrical
features of the unicycle model, a lot of alternative and
effective control solutions have been proposed in the
literature for this kind of vehicle (from now on, we will call
them the unicycle controllers).1, 4, 6, 8, 11, 15, 19, 23, 24, 26, 27, 32–34

On the other hand, the more involved problem of motion
control for car-like vehicles has been treated less frequently.
More often, it has been tackled utilizing an auxiliary
transformed model,28 the most often in a form of the
canonical chained system.3, 20, 22, 23, 29, 31 The latter approach,
although very general and elegant, may reveal some known
drawbacks like locality of the chained-form transformation,
and the lack of guarantee for the dynamic control
quality invariance between the chained-system configuration
space and the vehicle task space where the motion is
realized.

Control design for the original state space of the car-
like kinematics is not a trivial problem and it is more
involved than for the unicycle. Both models belong to the
nonholonomic underactuated systems for which the number
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of configuration variables is strictly greater than the number
of control inputs.10, 30 Additionally, the time evolution of
both systems is constrained due to the nonslip motion
assumption for the vehicle wheels. An important difference
between the unicycle and car-like kinematics results from
the control inputs defined for them, which determine the
influence on the instantaneous motion curvature of the robot
platforms. The inputs for the unicycle kinematics, denoted
by v1 and v2 in Fig. 1, are directly the angular velocity of
the platform and the longitudinal velocity of the so-called
guidance point P, respectively. As a consequence, any desired
motion curvature of the unicycle can be instantaneously
forced by appropriately relating the two inputs to each
other. Due to the nonholonomic constraints, the instantaneous
center of rotation (ICR) is constrained for the unicycle to
the axle of the driving wheels. In contrast, for the car-
like vehicles, the instantaneous motion curvature cannot be
changed directly by varying the proportion of the available
control inputs, since the first control input (denoted by u1 in
Fig. 1) is in this case the rate of the steering wheel pivoting,
not the angular velocity of the robot platform. A desired
motion curvature of the car-like robot can be achieved by
changing the angle of the steering wheel that is related to
the control input u1 by the first-order dynamics. Thus, in
this case, the motion curvature change is delayed due to
the additional dynamics of the steering process. For the
special motorization of the car-like kinematics where the
rear wheel axle is driven, the motion curvature is limited
to some bounded range in contrast to the unicycle (the
ICR cannot be located at point P due to the kinematics
singularity).

Several dedicated feedback controllers for car-like robots
derived for its original configuration space have been
proposed in the literature, for example,12, 16, 36, 38 where the
rear-wheel-driven (RD) kinematics was considered, and ref.
[9] treating the front-wheel-driven (FD) car-like model. The
practical verification examples of selected control laws for
full-size road vehicles can be found in refs. [7, 37].

The main contribution of this paper is a general, and
geometrical in nature, feedback control framework for the
car-like kinematics applying controllers originally dedicated
for the unicycle model. It is expected that the idea will allow
one to effectively control the vehicle body-posture subsystem
utilizing features of the unicycle controllers widely proposed
in the literature. The solution presented in this paper takes
into account two types of motorizations of the car-like
vehicles—with a front-wheel driven and with a rear-wheel
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Fig. 1. Car-like mobile robots and the unicycle-like mobile robot in a global frame. Car-like robots have been presented with two kinds of
motorization: FD with front-wheel driven and RD with rear-wheel driven (the wheel depicted in dark gray is directly driven by a motor).

driven.1 All the practically possible cases for the steering
angle domain, leading to the limited and unlimited robot
motion curvature, are treated. The concept utilizes specific
geometrical features of the car-like kinematics, which can
be decomposed into two subsystems: the body posture one
equivalent to the unicycle model with redefined inputs,
and the steering subsystem describing the dynamics of the
steering wheel. It is shown that the wide range of unicycle
controllers known from the robotic literature and designed
for different motion tasks can be effectively and relatively
easily applied to the car-like vehicles using the framework
proposed in the paper. The most important features of
the presented control framework comes from its unique
geometrical features where the car-like kinematic models
are treated without approximations, without a need of any
auxiliary state variable transformations, and where the two
car-like motorizations with all practically possible steering
angle domains can be treated in a unified manner. To
the authors’ best knowledge, any similar concept meeting
all the mentioned features together has not been proposed in
the literature so far.

Notation. In the paper, the following notation will be used.
By f (x, ·), one denotes function f that depends on the
argument x and possibly also on some other arguments
undefined at the moment and indicated by the dot mark; if
one does not need or does not want to specify any arguments
of the function, one simply writes f (·). One indicates a set of
uniformly bounded m-dimensional vector functions by Lm

∞,
by R the set of real numbers. The time variable is denoted
by symbol τ , while the subscript t indicates the reference
signals. Equality by definition is denoted by �, while the
symbol := means equal due to substitution. The expression
∂ f (·)/∂τ denotes the partial derivative related only to those
terms of function f that are explicitly dependent on the time
variable.

1 We consider the car-like models in their generic (minimal) form
with the front and rear wheels degenerated to single wheels placed
in the midpoints of particular wheel axles (see Fig. 1).

2. Problem Formulation
Consider kinematic models of the car-like mobile robot
presented in Fig. 1 in two versions of motorization: FD with
front-wheel driven and RD with rear-wheel driven. Assuming
that the guidance point P is located in the center of the
rear wheel, the kinematic models can be formulated in the
following form:

�FD :

⎡
⎢⎣
β̇

θ̇

ẋ

ẏ

⎤
⎥⎦ =

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ u1 +

⎡
⎢⎣

0
1
L

sin β

cos β cos θ

cos β sin θ

⎤
⎥⎦ u2, (1)

�RD :

⎡
⎢⎣
β̇

θ̇

ẋ

ẏ

⎤
⎥⎦ =

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ u1 +

⎡
⎢⎣

0
1
L

tan β

cos θ

sin θ

⎤
⎥⎦ u2, (2)

where L > 0 is a distance between the front and rear wheels,
q = [β θ x y]T ∈ Qβ × R × R

2 is the configuration vector
with geometrical interpretation explained in Fig. 1, and u =
[u1 u2]T ∈ R

2 is the control input with u1 being the front-
wheel steering angular velocity, and u2 being the longitudinal
velocity of the driving wheel.

The two models (1) and (2) belong to the same class of
wheeled vehicles with one degree of mobility and one degree
of steerability (kinematics (1,1), see ref. [10]). The ICR for
both vehicle types is constrained to the rolling axle of the rear
wheel and is defined by the point where it is crossed by the
rolling axle of the front wheel (compare Fig. 1). The main
difference between models (1) and (2) results from the way
the vehicle platforms are driven by the second control input
u2. For the RD motorization, the front wheel is pushed in
its admissible direction proportionally only to the projection
u2 cos β, which degenerates to zero for |β| = π/2. Hence, in
the latter case, the kinematics (2) becomes singular because
tan(β = ±π/2) = ∞ and the vehicle cannot move in any
direction without slippage of the wheels (the jamming effect).
The FD kinematics (1) does not suffer from this limitation—
for |β| = π/2, the ICR is located at the guidance point P
and the vehicle platform can rotate around this point without

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 08 Jun 2012 IP address: 79.173.34.240

Feedback control framework for car-like robots using the unicycle controllers 519

limits. The similarity of the two models (1) and (2) can
be easily revealed by using u2 cos β as the second input in
model (2) instead of u2; in this case, both models have the
same structure. Using u2 cos β as the second input in Eq. (2)
would indicate that one considers only this part of the rear-
wheel driving velocity that pushes the front wheel along its
admissible direction (direction resulting from its natural roll
without slippage of the wheel).

The kinematics (1) and (2) are characterized by different
configuration subspaces Qβ . There are three possibilities:

C1. Qβ = (−βm, βm), βm = ∞, (Qβ ≡ R),
C2. Qβ = [−βm, βm], βm = π/2,
C3. Qβ = [−βm, βm], βm < π/2,

where βm > 0 is the maximal steering angle value admissible
for the considered model. System �FD admits subspaces C1
to C3, while �RD only C3 due to the model singularity
obtained for tan βm and βm = π/2. Note that for C1 and
C2, the maximal value for curvature κ = 1

L
tan β for car-like

kinematics is infinite, but for the constrained case C3, it is
finite and equal to κm = 1

L
tan βm. In case C1, one assumes

free rotation of the steering wheel around a vertical axis (such
a steering motorization is possible in robotic vehicles—for
an exemplary steering mechanism see ref. [2]). Case C2 is
simpler in practical applications and preserves the maximal
motion curvature attained for C1. Case C3 has the simplest
realization and is characteristic of kinematics of conventional
cars and bicycles.

Models (1) and (2) describe only the kinematics (motion
geometry) of the car-like vehicles with control inputs defined
in the space of velocities. All the effects resulting from
acceleration of the vehicle mass, rotational inertias, friction
forces, actuator dynamics, and other dynamical effects are
neglected here according to the implicit assumption about
the presence of the cascaded control system, in which the
inner velocity loops decouple the outer (kinematic-level)
control loop from all the mentioned dynamic effects. In this
case, treating the kinematics as the representative models of
the considered vehicles seems to be practically justified and
useful.2 In the cascaded control system, the control inputs
computed on the kinematic level are treated as the desired
velocities, which should be achieved using regulators in the
inner loops on the basic control level. From now on, our
attention will be focused on the kinematic level of the whole
control system.

In most practical motion tasks, the body-posture
configuration q = [θ x y]T of models (1) and (2) is more
relevant than the steering wheel configuration represented by
β. By properly redefining the control input u, it is possible
to rewrite the body-posture subsystem of �FD and �RD in
the form of unicycle kinematics with configuration vector
q ∈ R

3 and new input v ∈ R
2. The problem considered in

this paper is to formulate the general framework allowing a
user to apply the feedback controllers originally dedicated to
unicycle kinematics to the car-like kinematics (1) or (2) in
order to control its body-posture configuration q.

2 It is worth noting that the essential difficulties with control design
for nonholonomic wheeled robots are related to the kinematics
(motion geometry), not to the dynamics of the vehicle.

To make our considerations strict enough, let us recall the
unicycle kinematics⎡

⎣θ̇

ẋ

ẏ

⎤
⎦ =

⎡
⎣1 0

0 cos θ

0 sin θ

⎤
⎦ [

v1

v2

]
⇒ q̇ = G(q)v (3)

with the configuration q = [θ x y]T ∈ R
3 and with the input

vector v = [v1 v2]T ∈ R
2, where v1 is a vehicle angular

velocity, and v2 is a longitudinal velocity of its guidance
point P (compare Fig. 1). We assume for the kinematics (3)
that the original bounded feedback control function is given
by

φ(e(τ ), ·) =
[
φ1(e(τ ), ·)
φ2(e(τ ), ·)

]
∈ L2

∞, (4)

where

e = [
eθ ex ey

]T � (q t − q) ∈ R
3 (5)

is a posture error, q t = [θt xt yt ]T ∈ R
3 is a bounded

reference posture-trajectory, and τ ∈ R≥0 is a time variable.
Assume also that Eq. (4) is an asymptotic stabilizer meaning
that after its application to kinematics (3) by taking v :=
φ(e(τ ), ·) it is ensured that limτ→∞ ‖ e(τ )‖ = 0 uniformly
in time. We additionally restrict the time-varying reference
configurations q t (τ ) and control function φ(·) in Eq. (4) as
follows:

A1. q t (τ ) ∈ Cd is an admissible trajectory satisfying Eq. (3)
with d sufficiently high,

A2. ∀ τ ≥ 0
∣∣∣ v1t (τ )
v2t (τ )

∣∣∣ =
∣∣∣ θ̇t (τ )
ẋt (τ ) cos θt (τ )+ẏt (τ ) sin θt (τ )

∣∣∣ ≤
∣∣∣ tan βm

L

∣∣∣,
A3. ∂φ1,2/∂e ∈ L3

∞, ∂φ/∂τ ∈ L2
∞,

A4. |φ1(τ )/φ2(τ )| ≤ ∣∣ 1
L

tan βm

∣∣ for almost all τ ≥ 0,

where v1t (τ ) and v2t (τ ) are the reference inputs (velocities)
for the unicycle. The problem considered in the paper can be
formulated as follows.

Problem 1 The problem is to find feedback control laws u =
u(φ, q, ·), which—when applied to car-like kinematics (1) or
(2)—guarantee that the time evolution of their body-posture
configuration q will be determined (at least asymptotically)
by Eq. (3) with input v := φ(e(τ ), ·) under assumptions A1–
A4.

Let us shortly justify and comment on restrictions imposed
by A1–A4. The continuity of the reference trajectory q t (τ )
in A1 is necessary to ensure the boundedness of the original
control law (4) in the sense of these terms where the time
derivatives of reference signals are utilized. The order d

(smoothness order) in A1 depends on the particular form
of the original control function selected in Eq. (4). The
admissibility introduced in assumption A1 means that the
reference trajectory q t (τ ) is feasible for the original unicycle
model by preserving its nonholonomic constraints imposed
by Eq. (3). The admissibility is a necessary condition to
obtain the asymptotic convergence in the closed-loop system
(3)+(4).21, 22 Since we assume that Eq. (4) is an asymptotic
stabilizer for the unicycle, the reference signals must satisfy
the admissibility condition stated in A1. The assumption
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of boundedness for partial derivatives imposed in A3 is
important to ensure the boundedness of time derivatives
φ̇1 and φ̇2 used further in the proposed control strategy
(see Eqs. (16) and (17)). A2 and A4 determine the motion
feasibility assumptions for the car-like kinematics in the
sense of the maximal motion curvature the vehicle can
attain. They result from the fact that not all instantaneous
motion curvatures can be physically realized by car-like
kinematics constrained by the limited steering configuration
given by C3. Assumption A2 imposes the upper limit for
the instantaneous motion curvature defined by the unicycle
reference trajectory (on the right-hand side in the inequality).
This reference curvature should satisfy the upper bound of
the robot curvature resulting from the maximal steering angle
value βm achievable by the car-like vehicle. Thus, A2 maps
the motion curvature feasibility of the car-like vehicle into
the set of admissible reference trajectories of the reference
unicycle. Note that the inequality in A2 is only limiting
if |βm| < π/2. Similarly, assumption A4 maps the motion
curvature feasibility of the car-like vehicle into the set of
admissible feedback control actions φ(τ ) originally designed
for the unicycle. Thus, only the control actions of Eq. (4)
that satisfy A4 can be successfully emulated by the car-
like vehicle. To make A4 less restrictive in practice, one
admits its violation in a zero-measure set of time instants
during a transient stage, when A4 may be temporarily not
met. Apart from some modification of the transients, this
temporal violation will not have any degrading consequences
asymptotically, since according to A2 the inequality in A4
is satisfied in a sufficiently small vicinity of q t (τ ) and along
q t (τ ).

According to Problem 1 and the assumptions formulated
above the aim is to emulate the time evolution of the closed-
loop system (3)+(4) by the body-configuration vector q of
the car-like kinematics in order to preserve the convergence
results originally proved for the unicycle when controlled
by the stabilizer (4). A solution to Problem 1 for the two
car-like kinematics �FD and �RD, taking into account all the
three cases of steering subspaces given by C1 to C3, will be
proposed in the sequel.

3. Applying the Unicycle Controllers to Car-Like
Kinematics
The concept proposed in the paper can be generally described
as follows. First, we redefine the input signals to original
kinematics (1) and (2) using an invertible transformation
fu : (u2, β) �→ v to obtain the car-like model in a form of
concatenation of the body-posture subsystem in the unicycle
form with new inputs v, and the remaining steering dynamics
β̇ = u1 (the first rows of Eqs. (1) and (2))

β̇ = u1, (6)

q̇ = G(q)v, (7)

where Eq. (7) has the unicycle-like structure defined in
Eq. (3). Second, for the nominal control functions φ taken
from the selected unicycle controller (and substituted into
v according to Eq. (4)), we have to recover the original

input u2 and a desired steering angle βd using the inverse
transformation: (u2(φ), βd (φ)) = f −1

u (φ). Note that we have
to use here the desired angle βd instead of β since the
steering angle and input u1 in the car-like kinematics
(1) and (2) are related to each other by the integral
relation (additional dynamics for the steering variable).
Now, the pair (u2(φ), βd(φ)) denotes the desired driving
velocity and the desired steering angle, which—if realized
precisely—guarantee that v := fu(u2(φ), βd (φ)) = φ. The
latter equation implies that the body-posture subsystem of
the original car-like kinematics is driven by the control
functions φ determined by the unicycle controller; thus, time
evolution of the body-posture subsystem is fully determined
by Eqs. (3) and (4). Third, since the steering angle β cannot
be forced directly to βd (compare first rows of Eqs. (1) and
(2)), introduction of the steering angle stabilizing controller
u1 = u1(βd (φ), β, ·) guaranteeing that β → βd is required in
the last design stage. Details of the design stages mentioned
above specialized to both car-like models—FD and RD—are
described below.

Let us first consider the car-like model with FD
motorization. Introducing the new control inputs

f FD
u : v1 := 1

L
u2 sin β, v2 := u2 cos β (8)

for the body-posture subsystem of �FD allows rewriting
Eq. (1) in the form of two subsystems denoted by Eqs. (6)
and (7). By substituting v1 = φ1 and v2 = φ2, the inverse
transformation ( f FD

u )−1 leading to the pair (u2(φ), βd (φ))
can be easily derived according to the following relations
obtained from Eq. (8):

u2(φ) = φ2 cos β + Lφ1 sin β, (9)

tan β = Lφ1 · u2

φ2 · u2
. (10)

Equation (9) finally determines the driving control function
for kinematics (1). On the other hand, relation (10) cannot be
met instantaneously because the steering angle β is related
to the control input u1 through the integral relation according
to Eq. (1). Hence, in order to meet Eq. (10), one proposes to
introduce the auxiliary desired steering variable

βd (φ) �
{

Atan2c(γLφ1, γ φ2) for C1,

Sat(arctan (Lφ1/φ2) , βm) for C2, C3,
(11)

where γ � sgn(u2(φ)) ∈ {−1, +1}, Atan2c(·, ·) : R × R �→
R is a continuous version3 of the four-quadrant function
Atan2 (·, ·) : R × R �→ (−π, π], and

Sat(f, B) �
{

f if |f | ≤ B,

B sgn(f ) if |f | > B.
(12)

In order to preserve the original domain of the steering
angle definition Qβ , the maximum steering angle value βm

3 More details on computations of Atan2c(·, ·) can be found in ref.
[19].
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in Eq. (11) should be appropriately chosen according to
the configuration subspace under consideration (see C2 and
C3). To guarantee that β is convergent to βd (φ) (and, as a
consequence, Eq. (10) is met), we define the steering error

ed � βd (φ) − β, (13)

which should be made convergent to zero using the input u1.
Let us propose the steering angle stabilizer in the form of

u1(ed, ·) � kd sgn(ed ) |ed |δ + β̇d (φ), (14)

with kd > 0 and δ ∈ (0, 1] treated as design parameters (for
explanation see Remark 1). The term β̇d (φ) in Eq. (14) results
from the time derivative of Eq. (11)

β̇d(φ) =
{

L(φ̇1φ2−φ1φ̇2)
L2φ2

1+φ2
2

if |βd (φ)| ≤ βm,

0 if |βd (φ)| > βm,
(15)

where

φ̇1 = ∂φ1

∂e
ė + ∂φ1

∂τ

(7)= ∂φ1

∂e

(
q̇ t − G(q)v

) + ∂φ1

∂τ
, (16)

φ̇2 = ∂φ2

∂e
ė + ∂φ2

∂τ

(7)= ∂φ2

∂e

(
q̇ t − G(q)v

) + ∂φ2

∂τ
. (17)

The particular form of the above derivatives depends on the
unicycle controller selected by a user.

To obtain the �RD model in the form of Eqs. (6) and (7), we
redefine the inputs to the body-posture kinematics of Eq. (2)
as

f RD
u : v1 := 1

L
u2 tan β, v2 := u2. (18)

After substituting v1 = φ1 and v2 = φ2, the inverse
transformation ( f RD

u )−1 leading to the pair (u2(φ), βd (φ))
can be derived according to the following relations obtained
from Eq. (18):

u2(φ) = cos β(φ2 cos β + Lφ1 sin β), (19)

tan β = Lφ1

φ2
. (20)

Equation (19) determines the final driving control function
for kinematics (2). Again Eq. (20) cannot be met
instantaneously due to the integral relation between angle
β and the input u1 in Eq. (2). Hence, one introduces the
auxiliary desired steering variable

βd (φ) � Sat(arctan (Lφ1/φ2) , βm), (21)

with Sat(·, ·) determined in Eq. (12). Note that due to the
structural singularity of the RD kinematics, definition (21)
is now valid only for the steering configuration subspace
defined by C3 (βm < π/2). Now, we proceed similarly as
for the FD motorization recalling the steering error (13),
computed in this case for Eq. (21), and the steering angle
stabilizer (14) with the feed-forward term given by Eq. (15)

and time derivatives (16) and (17). Using these definitions,
one finishes the last general control design stage for RD
kinematics.

Remark 1 The steering angle stabilizer introduced in
Eq. (14) has a flexible structure that allows the designer to
select type of convergence for the steering error ed (τ ): either
infinite time or finite time. By taking δ = 1, the stabilizer
(14) simplifies to the linear controller u1 = kd ed + β̇d (φ),
which guarantees asymptotic (infinite time) convergence of
ed (τ ). By taking δ in the range (0, 1), one obtains a finite-
time continuous (but non-Lipschitz at zero) stabilizer that
makes the error ed (τ ) tend to zero within a finite time
horizon.5 Selection of the exponent δ in this case influences
the convergence duration for ed according to the strategy:
the less the exponent value the shorter the convergence time.
For justification of the above claims, the reader is referred to
the formal analysis in Section 3.1.

The block schema explaining the computational flowchart
of the proposed control framework is shown in Fig. 2. The
reference generator block and the underlying control law are
directly applied here as for the unicycle kinematics. Adopting
the unicycle control strategy to a vehicle body of the car-like
vehicle is possible thanks to the intermediate block denoted in
Fig. 2 by a gray box. For the computations of time derivative
φ̇ = [φ̇1 φ̇2]T (compare Eqs. (16) and (17)), one can use
the redefined input v = [v1 v2]T determined upon the current
values of u2 and β following Eq. (8) or Eq. (18). Note that the
body configuration q is an output of the controlled process,
while steering angle β is treated here as an auxiliary (internal)
variable.

Remark 2 Definitions (11), (15), and (21) are not
determined at time instants τ when φ1(τ ) = φ2(τ ) = 0.
For time-varying reference configurations q t (τ ), it may
occasionally occur during a transient stage, but it cannot
be persistent since the control function φ(·) if asymptotically
stabilizing from assumption. If the body-configuration
reference q t is constant, the only possibility for time-
invariant stabilizers is φ(e, τ ) = 0 for e = 0, again due to the
assumed asymptotic stabilizing feature of φ(·) and driftless
nature of kinematics (3). In this case, condition φ(e =
0, τ ) = 0 cannot be valid in finite time from assumption (φ(·)
is not a finite-time stabilizer) if ‖ e(0)‖ = 0; therefore, it is
theoretically avoidable. However, in cases where either q t

is time varying or if q t is constant but ‖ e(0)‖ = 0 or the
selected set-point stabilizer is time varying, one needs to cope
with the indeterminacy mentioned above. Hence, to obtain
the controller well determined for these cases, we propose
to introduce additional definitions for the desired steering
angle and its time derivative

βd (φ(τ )) � βd(φ(τ−)) = lim
τ→τ−

βd (φ(τ )), (22)

β̇d (φ(τ )) � 0, (23)

if the limit in Eq. (22) exists, or

βd (φ(τ )) � 0, β̇d(φ(τ )) � 0 (24)
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Reference
signals

generator
(for unicycle

model)

Unicycle
control law

(4)

Derivative
of unicycle

control function
(16) and (17)

Driving
controller
(9) or (19)

Car-like
kinematics
FD/RD

Streering
angle

stabilizer
(14)

Desired
angle gen.

(11) or (21)

Desired
angle rate

(15)

Intermediate block

Fig. 2. Block schema of the general control framework, which allows applying unicycle controllers to the car-like kinematics.

in the opposite case. The above definitions can be used
for ‖φ(τ )‖ = 0 or for ‖φ(τ )‖ < ε, where ε > 0 is an
assumed sufficiently small vicinity of the indeterminacy
point. The latter condition utilized together with the
switching u2(‖ φ(τ )‖ < ε) := 0 may be preferred in practical
applications attenuating the negative influence of the
measurement noise or a finite numerical precision in
particular control implementation.

Remark 3 For the RD motorization, one can formulate
an alternative definition for the desired steering angle βd

instead of Eq. (21). Using only the first equation of Eq. (18),
one can propose

βd (φ) � Sat(arctan (Lφ1/u2(φ)) , βm) (25)

with u2(φ) taken from Eq. (19). In practice, definition (25)
may reveal some benefits over Eq. (21). Namely, since for RD
kinematics the driving input given by Eq. (19) can be equal
to zero when simultaneously φ1 = φ2 = 0, the saturation of
Eq. (25) obtained for division by zero in arctan (·) function
may occur less frequent than in Eq. (21).

3.1. Stability analysis
To analyze stability of the proposed closed-loop control
system for FD and RD car-like robots, one needs to take into
account the reformulated kinematics represented by Eqs. (6)
and (7) together with the steering stabilizing controller
(14) and body-posture inputs determined, as appropriate, by
Eq. (8) or Eq. (18) with driving control u2 given by Eq. (9)
or Eq. (19), respectively. We need to check the boundedness
and convergence properties of body-posture error e(τ ), and
the time behavior of steering angle β(τ ). First, we consider
the case when φ2

1 + φ2
2 = 0, thus definitions (11), (15), and

(21) are well determined.
We start with applying the steering control (14) to

subsystem (6), which gives a differential equation in the form

ėd = −kd sgn(ed ) |ed |δ � fd (ed ). (26)

For δ = 1, the solution of Eq. (26) is asymptotically stable

lim
τ→∞ ed (τ ) = 0, ed (τ ) = ed (0) exp(−kdτ ), (27)

while for δ ∈ (0, 1) one obtains the finite-time convergence
(see ref. [5])

lim
τ→Td

ed (τ ) = 0, Td = 2V
(1−δ)/2
d0

cd (1 − δ)
, (28)

where cd = kd

√
2

δ+1
, Vd0 = 1

2e2
d (0). The above convergence

results will be used in the sequel.
Since the original feedback control function φ(·) given in

Eq. (4) is assumed to be bounded, one can define its upper
bound

φm = sup
τ≥0

‖φ(e(τ ), τ )‖ < ∞. (29)

For the nominal case, v = φ(·) is an asymptotically
stabilizing function for Eq. (3). Thus, using Eqs. (5) and
(4), one obtains

ė = fn(e, τ ), fn(e, τ ) = q̇ t − G(q t − e)φ(e, τ ). (30)

Application of the converse Lyapunov theorem (see ref. [14],
Theorem 4.16) implies that for the nominal closed-loop error
dynamics (30) there exists a positive definite function

V (e = 0, τ ) > 0, V (e = 0, τ ) = 0, ∀ τ ≥ 0, (31)

which meets the following relations:

ρ1(‖ e‖) ≤ V (e, τ ) ≤ ρ2(‖ e‖), (32)

V̇ (e, τ ) = ∂V

∂τ
+ ∂V

∂e
fn(e, τ ) ≤ −ρ3(‖ e‖), (33)∥∥∥∥ ∂V

∂e

∥∥∥∥ ≤ ρ4(‖ e‖), (34)
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where ρi(·), i = 1, . . . , 4 are functions of class K.
For the purpose of further considerations, let us note that

the body-posture inputs v with u2 given by Eq. (9) or Eq. (19)
satisfy, for FD as well as for RD kinematics, the following
equation (see Appendix):

v =
[
v1

v2

]
= φ + F(ed, βd(φ))φ = φ + ε(ed, φ), (35)

where ε(ed = 0, φ) = 0 can be treated as an input-additive
vanishing perturbation, φ(·) is a nominal stabilizing control
function introduced in Eq. (4), and

F(ed, βd(φ))

=
[

−c2(βd (φ) − ed ) 1
L

s(βd (φ) − ed )c(βd (φ) − ed )
Ls(βd (φ) − ed )c(βd (φ) − ed ) −s2(βd (φ) − ed )

]
.

(36)

Hereafter, Eq. (35) will be treated as a practical case of the
control input v for the body-posture subsystem (7). For the
practical case, by applying Eq. (35) into Eq. (7) and using
Eq. (5), the closed-loop error dynamics takes the following
form:

ė = fn(e, τ ) + g(e, τ, ed) � f (e, τ, ed), (37)

where fn(e, τ ) is defined in Eq. (30), and

g(e, τ, ed) = −G(q t − e)ε(ed, φ(e, τ )) (38)

is now an interconnection term between the body-posture
error dynamics (37) and the steering error dynamics given by
Eq. (26). According to Eq. (38) and since ε(ed = 0, φ) = 0
(see Appendix), one obtains

g(e, τ, 0) = 0. (39)

In function f (e, τ, ed) from Eq. (37) only component
g(e, τ, ed) depends on error ed through term ε(ed, φ(e, τ )) =
F(ed, βd(φ))φ (see Eqs. (35) and (38)) with matrix
F(ed, βd(φ)) determined in Eq. (36). Hence, it is clear
that term g(e, τ, ed) and, in a consequence, function
f (e, τ, ed) from Eq. (37) is Lipschitz continuous in ed

yielding ‖ f (e, τ, ed) − f (e, τ, 0)‖ ≤ l |ed |, where l > 0 is
a Lipschitz constant. Now, according to Eqs. (37) and (39),
one obtains

‖ g(e, τ, ed)‖ ≤ l |ed | . (40)

Using inequalities (33), (34), and (40), one can asses the
time derivative of the positive definite function (31) along
solutions of the closed-loop dynamics (37) as follows:

V̇ = ∂V

∂τ
+ ∂V

∂e
( fn(e, τ ) + g(e, τ, ed))

= ∂V

∂τ
+ ∂V

∂e
fn(e, τ ) + ∂V

∂e
g(e, τ, ed)

≤ −ρ3(‖ e‖) + ∂V

∂e
g(e, τ, ed)

≤ −ρ3(‖ e‖) +
∥∥∥∥ ∂V

∂e

∥∥∥∥ ‖ g(e, τ, ed)‖

≤ −ρ3(‖ e‖) + lρ4(‖ e‖) |ed |
= −(1 − χ)ρ3(‖ e‖) − χρ3(‖ e‖) + lρ4(‖ e‖) |ed | , (41)

where χ ∈ (0, 1) is a constant. The right-hand side of Eq. (41)
is negative definite for

ρ3(‖ e‖)

ρ4(‖ e‖)
≥ l |ed |

χ
. (42)

Since ed (τ ) can tend to zero arbitrarily fast (compare
Eqs. (27) and (28)), and ρ3(·), ρ4(·) are positive definite and
strictly increasing, the inequality (42) can be met for some
finite ‖ e‖ = 0. Applying now Theorem 4.19 formulated in
ref. [14], one can conclude about the input-to-state stability
of dynamics (37) with input ed . If the nominal stabilizing
function φ(·) guarantees uniform exponential stability of the
dynamics (30), then the bounding functions from Eqs. (33)
and (34) take the form ρ3(‖ e‖) = c3 ‖ e‖2 and ρ4(‖ e‖) =
c4 ‖ e‖ with c3, c4 > 0 (see ref. [14], Theorem 4.14). In
this case, inequality (42) leads to the explicit condition
‖ e‖ ≥ (lc4/(χc3)) |ed |, for which the time derivative V̇ is
negative definite implying input-to-state stability of Eq. (37).

Rewriting now the two interconnected error subsystems
(37) and (26) as

ė = f (e, τ, ed),

ėd = fd (ed ),

one can recall what follows. The latter subsystem4 has a
bounded solution and the asymptotically stable equilibrium
at ed = 0. The first subsystem is input-to-state stable with
ed viewed as an input. For the nominal case where v = φ(·),
the error dynamics ė = f (e, τ, 0) = fn(e, τ ) has a uniformly
asymptotically stable equilibrium e = 0 by assumption. As a
consequence of Lemma 4.7 given in ref. [14], one concludes
that the equilibrium [eT ed ]T = [0 0]T for the cascade systems
(26)–(37) is uniformly asymptotically stable.

Since ed (τ ) tends to zero, the steering variable β(τ ) is
convergent to the desired steering function βd (τ ). To show
what happens with β(τ ) for e(τ ) → 0, one has to analyze
the time behavior of βd(φ(e, τ )) at this limit. We consider
separately two cases: of a time-varying reference q t (τ ) and
of a constant reference q t .

For the case of admissible reference trajectory q t (τ ), it
is necessary that φ(e = 0, τ ) = vt (τ ), where the reference
input vt (τ ) = [θ̇t (τ ) ẋt (τ ) cos θt (τ ) + ẏt (τ ) sin θt (τ )]T =
[v1t (τ ) v2t (τ )]T together with q t (τ ) satisfies Eq. (3). Thus,
the desired steering angle defined by Eq. (11) or Eq. (21)
is well determined along the reference trajectory q t (τ ) (for
e = 0) by the reference input vt (τ ).

The time behavior of βd in the case of a constant reference
q t is generally more difficult to determine, since now φ(·) →
0 when e(τ ) tends to zero. Thus terminally, definitions (11)
and (21) are not well defined. Since e(τ ) → 0 as τ → ∞,

4 Lipschitz continuous in ed for δ = 1.
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one can write: limτ→∞ φ(e(τ ), τ ) = 0. Using additional
definitions (22) and (23), one can analyze the limit β lim

d =
limτ→∞ βd (φ(e(τ ), τ )) to obtain the terminal behavior of
steering variable β. Recalling again Eqs. (11) and (21), it is
clear that terminal value of βd depends on the convergence-
rate ratio of φ1(·) and φ2(·). Generally, this ratio comes from
structural properties of a particular stabilizing control func-
tion φ(·) selected by the user. Therefore, it is possible to claim
about β lim

d only assuming a special case of a selected stabil-
izer. Taking, for example, a properly tuned unicycle control-
ler proposed in ref. [19], it can be shown that terminally φ1(·)
always tends to zero faster than φ2(·), thus in this case β lim

d =
jπ, j = 0, 1, 2 . . .. However, in general, if for a selected
unicycle controller the convergence-rate ratio of φ1(·) and
φ2(·) cannot be determined, the terminal value β lim

d may not
exist leading to permanent oscillations of βd (τ ) as τ → ∞.

Finally, we have to comment how the discontinuity related
to the condition ‖ φ(·)‖ = 0 influences stability of the closed-
loop system during a transient stage. Note that for a time-
varying reference q t (τ ) and for a constant q t , condition
‖φ(·)‖ = 0 implies u2(‖φ(·)‖ = 0) = 0 (see Eqs. (9) and
(19)). Therefore, the body-posture subsystem (7) does not
move for ‖ φ(τ )‖ = 0 (see Eqs. (8) and (18)) and the finite-
time escape effect is not possible here. For the tracking
case, only a slight temporary increase of the tracking
error may hold (caused by the moving reference point
q t (τ )), which, however, can be again attenuated for τ > τ

(condition ‖φ(·)‖ = 0 cannot be persistent by assumption).
If one applies a more practical condition ‖ φ(·)‖ < ε for
ε > 0 together with the switching u2(‖ φ(·)‖ < ε) =: 0 (see
Remark 2) for activation of additional definitions (22) and
(23) or (24), then the temporary increase of the tracking error
may be a little higher since the vehicle posture stays in ε for
some finite time interval. In the case of set-point regulation,
application of the practical condition with switching
u2(‖φ(·)‖ < ε) := 0 implies that the vehicle posture stops
at some vicinity ε∗ = ε∗(ε, ·) > 0 of the reference point
and stays there if ‖φ(·)‖ is nonincreasing for future time:
∀τ > τ ∗ ‖ e(τ )‖ = ε∗(ε, ·), τ ∗ : ‖φ(τ ∗)‖ = ε. In this case,
one obtains only the ultimate boundedness (see ref. [10]) of
the error e rather than its asymptotic convergence to zero.

It is worth to note that for ed = 0 (hence, for β = βd)
the inputs defined by Eqs. (8) and (18) of the body-posture
subsystem (7) are equal to the nominal unicycle control
functions: v1 = φ1, v2 = φ2. This can be easily shown by
substituting definitions (9) and (19) with β = βd into Eqs. (8)
and (18), respectively, and using relation (10) or (20).

4. Simulation Examples
To illustrate the effectiveness of the proposed control
strategy, six simulation examples E1–E6 are discussed using
different unicycle controllers presented in the literature.
To obtain simplicity and variety of exposition, a set of
widely known and well established as well as novel unicycle
controllers has been selected. The first two examples present
the control quality for the trajectory tracking task using
linearization-based6 and Vector-Field-Orientation (VFO)19

unicycle controllers. The third example, slightly different
in nature compared to tracking but practically important,

Table I. Selected parameters and conditions for simulation
examples.

Ex. Model βm δ Motion task Unicycle controller

E1 FD ∞ 1 Tracking Linearization-based6

E2 RD π/3 1 Tracking VFO19

E3 FD π/2 1 Path following Nonlinear27

E4 RD π/3 2/3 Regulation Time varying25

E5 RD π/4 1 Regulation Time invariant15

E6 FD π/2 1 Regulation VFO19

illustrates the path-following task utilizing the Samson’s
nonlinear controller.27 The last three simulations illustrate
performance obtained in the set-point regulation task with
the smooth time varying25 and two discontinuous time-
invariant stabilizers.15, 19 All simulations were run within the
time horizon of τh = 20 s using the kinematic model (1)
or (2) with the geometric parameter L = 0.2 m and with
the steering controller gain kd = 10 (compare Eq. (14)).
The basic conditions for the particular examples together
with the values of selected parameters are summarized in
Table I. The plots of the paths and the robot configurations
on the plane are denoted as follows: reference trajectory—
solid black line, path drawn by the robot—dashed gray
line, robot configurations—green skeletons, initial robot
configuration—red skeleton (a small circle denotes the
guidance point of the vehicle platform and a star mark
denotes the front part of the steered wheel). Further details
of the conducted simulation tests are specified in the next
subsections.

4.1. Tracking with the linearization-based controller (E1)
The first unicycle tracking controller selected in example E1
was taken from ref. [6]. Its structure results from linearization
of the closed-loop error dynamics along a reference trajectory
q t (τ ). The nominal unicycle control functions are represented
as follows:

φ1 = φ1t + k3(φt )sgn(φ2t )e3 − k1(φt )e1, (43)

φ2 = φ2t cos e1 + k2(φt )e2, (44)

where k1(vt ) = k2(vt ) = 2ξ

√
v2

1t + bv2
2t , k3(vt ) = b |v2t |,

ξ, b > 0, and e = [e1 e2 e3]T = Rz(−θ)e with Rz(·) ∈ SO(3)
being the basic rotation operator around z-axis. The reference
signals, particular values, and initial conditions were
selected as follows: v1t (τ ) = −0.3 + 0.5 sin(2τ ), v2t (τ ) =
0.2 + 0.05 sin(2τ ) (forward reference motion), q t (0) = 0,
q(0) = [0 0 − 0.2 − 0.4]T, ξ = 1, b = 10. Simulations
were run for FD motorization with βm = ∞ using steering
controller (14) with δ = 1. The results are presented in Fig. 3.

4.2. Tracking with the VFO controller (E2)
The second unicycle tracking controller was chosen to be
the VFO controller proposed in ref. [19]. The VFO control
structure results from simple geometrical interpretations
related to the unicycle kinematics, from introduction of the
so-called convergence vector field, and from decomposition
of the control process into the orienting and pushing
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Fig. 3. (Colour online) E1: Simulation results of the trajectory tracking task with an FD car-like robot using the linearization-based unicycle
controller (initial robot configuration has been highlighted in red).

subprocesses. The nominal unicycle VFO control inputs are
defined as follows:

φ1 = ka(θa − θ) + θ̇a, (45)

φ2 = hx cos θ + hy sin θ, (46)

where θa = Atan2c(σhy, σhx), σ = sgn(v2t (τ )), θ̇a =
(ḣyhx − hyḣx)/(h2

x + h2
y), and h∗ = [hx hy]T = kpe∗ + q̇∗

t ,
e∗ = [ex ey]T, q̇∗

t = [ẋt ẏt ]T. The constants ka, kp > 0
are the design parameters. Simulations were run for RD
motorization with βm = π/3 using steering controller (14)
with δ = 1, and selecting: v1t (τ ) = −0.3 + 0.5 sin(2τ ),
v2t = −0.2 + 0.05 sin(2τ ) (backward reference motion),
q t (0) = 0, q(0) = [0 0 − 0.2 0.5]T, and ka = 5, kp = 2. The
results obtained are presented in Fig. 4.

4.3. Path following with the nonlinear controller (E3)
For a path-following task, we have used the nonlinear
unicycle controller proposed by Samson in ref. [27].

The nominal unicycle control functions are defined
as

φ1 = −k2V
sin eθ

eθ

D − k3 |V | eθ + V κp cos eθ

1 − Dκp

, (47)

φ2 = V, (48)

where k2,3 > 0 are design parameters, V = 0 is an assumed
and constant driving velocity of the vehicle, κp is a current
curvature of the path, and eθ = θ − θd is an orientation error
along the path with θd being the desired orientation on the
path. For simulations, the circular desired path of radius
R and centered at the origin was selected. The position
error D = R −

√
x2 + y2 denotes the shortest distance to

the path. The following values and definitions were used:
q(0) = [0 0 − 0.2 0.5]T, R = 1/κp = 0.7 m, V = 0.3
m/s, k2 = 16, k3 = 8, θd = Atan2c(y, x) + π/2. Simulations
were run for FD motorization with βm = π/2 using steering
controller (14) with δ = 1. The results are presented in Fig. 5.
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Fig. 4. (Colour online) E2: Simulation results of the trajectory tracking task with an RD car-like robot using the VFO unicycle controller
(initial robot configuration has been highlighted in red).

4.4. Set-point regulation with time-varying controller (E4)
Example E4 concerns a set-point regulation task with the
smooth time-varying stabilizer obtained by using the general
design method proposed by Pomet in ref. [25]. By defining
the Lyapunov function V = 1

2k1(e1 + h)2 + 1
2 (k2e

2
2 + k3e

2
3)

for the error dynamics with k1,2,3 > 0, where h = h(e, τ ) =
k4 ‖ e∗‖ cos(ωτ ) is a time-varying component with ω, k4 > 0,
and e = [e1 e2 e3]T = −Rz(−θt )e with Rz(·) ∈ SO(3), the
following unicycle control functions are obtained:

φ1 = ωk4

∥∥ e∗∥∥ sin(ωτ ) − k1(e1 + h), (49)

φ2 = −k2e2 − k3e3 − 4k1k4

∥∥ e∗∥∥ (e1 + h) cos(ωτ ), (50)

with e∗ = [e2 e3]T. For simulation purposes, the reference
point, initial conditions, and the parameter values were
selected as q t = 0, q(0) = [0 0 0.5 0.5]T, k1,2,3 = 2, and
ω = k4 = 1. In this case, the finite-time steering controller
(14) was used with δ = 2/3. Simulations were run for RD

motorization with βm = π/3. The results are presented in
Fig. 6.

4.5. Set-point regulation with time-invariant controllers
(E5, E6)
In the example E5, we applied the discontinuous time-
invariant controller considered by Kim and Tsiotras in ref.
[15] to solve a set-point regulation task. The unicycle control
functions obtained for the chained-form transformation of
the original kinematics are as follows:

φ1 = −kx2 − μx1
(
x3 − 0.5x1x2

)
/
(
x2

1 + x2
2

)
, (51)

φ2 = −kx1 + μx2
(
x3 − 0.5x1x2

)
/
(
x2

1 + x2
2

)
, (52)

where k, μ > 0 are design parameters, x1 = e2 cos e1 +
e3 sin e1, x2 = e1, x3 = e2 sin e1 − e3 cos e1 are the defini-
tions of the chained-form system states in the error space,
and e = [e1 e2 e3]T = −Rz(−θt )e with Rz(·) ∈ SO(3).
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Fig. 5. (Colour online) E3: Simulation results of the path-following task with an FD car-like robot using Samson’s nonlinear unicycle
controller (initial robot configuration has been highlighted in red).

Simulations were run for RD motorization with βm = π/4
using steering controller (14) with δ = 1 and taking q t = 0,
q0 = [0 0 0.5 0.5]T, k = 0.5, and μ = 2. The results are
presented in Fig. 7.

The last examined controller (example E6) was the
VFO stabilizer presented in ref. [19]. Origins of the VFO
stabilizer are the same as for the tracking controller recalled
in example E2. The unicycle control functions for the
controller are the same as in Eqs. (45) and (46), but now
σ = {−1, +1} is a decision factor, and h∗ = [hx hy]T =
kpe∗ + v∗, v∗ = −η σ ‖ e∗‖ g∗

2t , g∗
2t = [cos θt sin θt ]T. The

constant η ∈ (0, kp) is an additional design parameter (in
comparison to the VFO tracking controller). Simulations
were run for FD motorization with βm = π/2 using steering
controller (14) with δ = 1, and selecting σ = −1 (backward
parking maneuvers), q t = 0, q(0) = [0 0 0.1 0.8]T, and
η = 1.5 (other parameters were the same as for the VFO
tracking case). The obtained results are presented in Fig. 8.
It is worth noting that the two control laws examined in this

subsection are not Lyapunov stable, since the origin is not
an equilibrium of a closed-loop system—in this case, we can
talk about almost stabilizers.15

4.6. Comments to the results
The time plots of body-posture errors in Figs. 3 and 4
show asymptotic and relatively fast convergence toward zero,
especially for the VFO unicycle controller. In example E1, the
maximal admissible curvature is infinite, thus the whole plot
of κn (nominal curvature determined by the unicycle control-
ler) stays within the admissibility bounds. However, in ex-
ample E2, the feasible curvature is substantially limited, and
for some initial time intervals κn violates the bounds (assump-
tion A4 is temporarily not met). Despite these occasional
violations, the vehicle motion is then successfully completed,
what can justify relaxation of A4 for some time intervals as
mentioned in Section 2. Note that in both examples E1 and
E2, the oscillatory behavior of β variable results directly
from the selected nonconstant reference input v1t (τ ), which
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Fig. 6. (Colour online) E4: Simulation results of the set-point regulation task with an RD car-like robot using the smooth time-varying
unicycle controller (initial robot configuration has been highlighted in red).

defines the time-varying angular velocity of the robot body.
Since the car-like kinematics is a differentially flat system,
the behavior of β(τ ) for e ≈ 0 is fully determined by time
evolution of the flat outputs (x, y) and their time derivatives.

Note also good convergence for the path-following task
as illustrated by Fig. 5. In this case—since the constant-
curvature circular path was chosen—the steering angle β

converges to the constant value and does not oscillate.
Control quality for the most demanding set-point

regulation task has been presented in examples E4–E6 using
two stabilizers characterized by oscillatory behavior, and
one stabilizer leading to nonoscillatory transients. Frequent
oscillations obtained in examples E4 and E5 are related
to frequent robot-body motion reversals, and consequently,
frequent passing through zero for φ2(·). Recalling definition
(21), it is evident that this effect can imply more intensive
violations of the steering bound βm as can be seen from
Figs. 6 and 7. But again, if the number of violation time-
instants is not dense, the effective stabilization is still

possible driving the robot body to the reference point. As
predicted in the theoretical analysis from Section 3.1, for
the examined oscillatory stabilizers, the limit for βd(τ ) does
not exists, and the steering wheel is persistently reorienting
(compare Figs. 6 and 7). Much slower body-posture error
convergence obtained for E4 in comparison with E5 is a
direct consequence of the well-known features of smooth
time-varying stabilizers. Different behavior can be seen in
example E6, where the VFO stabilizer was used. Due to
the characteristic geometrical features of the VFO control
strategy,19 the first nominal input φ1(τ ) terminally always
tends to zero faster than φ2(τ ) as τ → ∞. This directly
implies the final convergence of βd (τ ) to its limit zero value
for τ → ∞ as can be seen in Fig. 8.

4.7. Limitations of the method—negative examples
Examples E1–E6 illustrate the effectiveness of the

proposed control scheme under assumptions A1–A4. It may
be interesting to check how violation of the assumptions
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Fig. 7. (Colour online) E5: Simulation results of the set-point regulation task with an RD car-like robot using the discontinuous time-invariant
unicycle controller (initial robot configuration has been highlighted in red).

influences behavior of the closed-loop system. Let us take
into account assumptions A2 and A4, since they are directly
related to the limitations on the steering angle β that are often
imposed in applications. In the sequel, two negative examples
are presented: NE1, where the feasibility condition A4 cannot
be met, and NE2, where the reference trajectory violates the
maximal-curvature condition A2.

Violation of A4 within a dense time interval can lead to
the lack of body-posture convergence—the vehicle gets stuck
in some configuration point away from the reference one.
Figure 9 presents such an exemplary situation obtained for the
time-invariant VFO controller and the parameters selected
as, for example, E6 but with βm = π/4. Demand of the high
motion curvature during a final stage of parking maneuvers
causes in this case too intensive violation of condition A4. It
is indicated by the plot of the nominal motion curvature κn(τ ),
which permanently violates the vehicle curvature bounds
after about 2.5 s of the simulation. As illustrated by the plots
of the posture error norm ‖ e(τ )‖ (denoted “Ne” in the figure)

and the control inputs u1(τ ), u2(τ ), it can be seen that the
closed-loop system remains stable with bounded controls but
the vehicle gets stuck in the neighborhood of the reference
point5. One can try to cope with this situation by proper
introduction (on a motion planning stage) of a via-point
between the initial posture and the reference one assuring
sufficient limitation of the nominal motion curvature.

Figure 10 illustrates control quality deterioration resulting
from violation of assumption A2. The results were obtained
using the linearization-based tracking controller assuming
the same conditions as, for example, E1 but with βm =
π/5. In this case, the reference trajectory (generated for
the unicycle model) periodically requires higher (in the
sense of the absolute value) motion curvature than the car-
like vehicle is able to achieve. It is visible on the plot of
the nominal motion curvature κn(τ ) that periodically crosses

5 It is worth to note that the considered maneuvers were successfully
completed using βm = π/3.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 08 Jun 2012 IP address: 79.173.34.240

530 Feedback control framework for car-like robots using the unicycle controllers

0 5 10 15 20

−1

0

1

2

Time (s)

 

 
e

θ
 (rad)

e
x
 (m)

e
y
 (m)

0 5 10 15 20
−20

−10

0

10

20

Time (s)

 

 
u

1
 (rad/s)

u
2
 (m/s)

0 5 10 15 20
−3

−2

−1

0

1

2

Time (s)

 

 
e
d

 (rad)

β (rad)

0 5 10 15 20
−10

−5

0

5

10

15

Time (s)

 

 
κ
n

mκ

−0.5 0 0.5 1

−0.5

0

0.5

1

x
G

 (m)

y G
 (

m
)

Fig. 8. (Colour online) E6: Simulation results of the set-point regulation task with an RD car-like robot using the VFO time-invariant
unicycle controller (initial robot configuration has been highlighted in red).

the curvature bounds after about 5 s of the simulation. The
plot of the posture error norm ‖ e(τ )‖ (denoted “Ne” in the
figure) reveals that the asymptotic convergence was lost in
this case; however, the stability of the closed-loop system
was preserved leading to the ultimate boundedness of the
errors. Since the curvature bound of the car-like robot is only
slightly less than this required by the reference trajectory, the
resulting motion quality of the vehicle seems to be acceptable
in some less demanding applications. Further deterioration
in the tracking precision is presented on the X–Y plot on the
right-hand side in Fig. 10, where the maximal steering angle
was limited to βm = π/8.

4.8. Practical implementation issues
In practical implementation of the proposed control

framework, three main issues are worth attention. The first
one is the robustness of the method to the model parametric
uncertainty, which in case of kinematics (1) and (2) is

related to a value of parameter L that in practice is unknown
exactly. The second problem concerns noisy measurements
of feedback signals and their influence on the closed-loop
system stability and performance. The third issue is related
to the problem of satisfying the physical limitations imposed
on the vehicle control inputs, which are always present in
practical applications.

To verify control performance for the proposed method
under all the practical conditions mentioned above, two
additional exemplary simulations EP1 and EP2 were run.
In order to examine robustness of the control system, an
overestimated value of the vehicle parameter Ls = 1.1 L
was introduced into the controller equations. Furthermore,
the zero-mean Gaussian measurement noises were added to
the feedback loop with the following standard deviations:
σβ = 0.0001, σθ = 0.0032, σx = σy = 0.001, respectively.
To cope with the control input limitations, the following on-
line scaling procedure was applied (the similar procedure for
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Fig. 9. (Colour online) NE1: Simulation results for the negative example of set-point regulation where the feasibility condition A4 is not
met (the results for RD motorization with βm = π/4); initial robot configuration has been highlighted in red.

the unicycle-like kinematics was used in ref. [19]):

us = 1

s
u, s � max

{
1;

|u1|
u1 max

;
|u2|

u2 max

}
∈ (0, 1], (53)

where us denotes the scaled (physically feasible) control
input vector that satisfies the imposed limits u1 max > 0 and
u2 max > 0, while u in Eq. (53) is the unlimited control
input computed according to the control law defined in
Section 3. During simulations, the following limits were
selected: u1 max = 3 rad/s and u2 max = 0.3 m/s for test
EP1, and u1 max = 3 rad/s and u2 max = 1 m/s for test EP2.
Simulation EP1 was run using the VFO tracking controller
under the conditions defined in example E2 but with lower
design gains kd = 4, kp = 1, and ka = 2. Simulation EP2
was organized according to conditions defined in example
E5. The results are shown in Figs. 11 and 12, where the plots
in the upper row illustrate the results obtained without the

measurement noises, and in the lower row—with the noises
added to the feedback loop.

Analyzing the results, one can find acceptable robustness
of the method to the model parametric uncertainty. In the
case of set-point control, the asymptotic convergence was
preserved. For the tracking case, one can expect only the
ultimate boundedness of the tracking error. On the other
hand, the feedback measurement noises are better tolerable
in the case of permanent motion of the vehicle as can be seen
in Fig. 11. For the set-point control when the posture errors
become very small and amplitudes of the control functions
φ1 and φ2 approach the noise level, the desired steering angle
computed by Eq. (11) or Eq. (21) is mostly driven by the noise
causing oscillatory character of the control input u1, clearly
visible in Fig. 12. Let us also stress here that the robustness
of the whole closed-loop control system results not only
from the proposed control framework but some properties
are also inherited from the unicycle stabilizer selected in
Eq. (4).
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Fig. 10. (Colour online) NE2: Simulation results for the negative example of a tracking task where the reference trajectory periodically
violates condition A2 (the results for FD motorization with βm = π/5; the additional X–Y plot on the right-hand side illustrates motion
performance for βm = π/8); initial robot configuration has been highlighted in red.

From the time plots of control signals, one may conclude
that the simple scaling procedure (53) is efficient preserving
the control input limitations during the whole control time-
horizon. Alternative solutions satisfying the state and input
bounds have recently been proposed for instant in ref. [13]
using the linear matrix inequalities (LMI) approach.

5. Concluding Remarks
In the paper, the general feedback control framework for the
car-like robots has been proposed, which makes it possible
to use the unicycle controllers with the more involved car-
like kinematics. The method can be applied to both types of
motorizations—with a FD and with a RD. All the possible
ranges (limited and unlimited) of the steering wheel angle
have been considered and examined. The concept proposed
assumes that the vehicle-body subsystem plays a crucial role
in a motion task, treating the steering wheel angle as an
auxiliary configuration variable. This means that the steering

angle is forced to follow its desired profile, computed in
a way that guarantees error convergence for the vehicle
body. Therefore, any convergence of the steering variable
has to be treated as a side effect of the strategy formulated
above together with intrinsic features of the utilized unicycle
controller. According to the results presented the steering
angle converges properly in the case of trajectory tracking
and path-following tasks due to the differential flatness
of the car-like kinematics. Lack of convergence for the
desired steering angle occurs for the examined oscillatory
set-point stabilizers, but it seems not to be very limiting in
many practical applications. Stabilizers with characteristic
features leading to faster terminal convergence for one of
the unicycle control functions can lead to the existence of
a desired steering angle limit, consequently guaranteeing
convergence also for the steering configuration variable.
Since the characteristics of the unicycle controllers are
inherited by the proposed control method (in the sense of
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Fig. 11. EP1: Simulation results of the trajectory tracking task tested under practical conditions. In the middle column, the time evolution
of ‖ e‖ is shown in the logarithmic scale.

the robot-body motion), successful practical utilization of
the unicycle controllers in the proposed scheme depends on
satisfaction of the motion-curvature feasibility assumption
A4 related to the maximal motion curvature required during
control task realization. Summarizing, the control method
proposed in the paper can be treated as a simplified and
complementary solution in comparison to the existing control
laws dedicated to the car-like kinematics. Its usage may
be effective especially in those practical motion control
tasks where the terminal convergence of the vehicle steering
subsystem is not critical.

Appendix. Derivation of the body-posture input v in the
form of Eq. (35)
For compactness, the following notation will be used
hereafter: sa ≡ sin a, ca ≡ cos a. In the computations below
v = [v1 v2]T denotes the control input vector of the unicycle
model introduced in Eq. (3) and then used in Eq. (7), and
by φ = [φ1 φ2]T one denotes the unicycle control functions
introduced in Eq. (4); the arguments of the functions are
omitted for compactness.

Substituting, respectively, definition (9) into Eq. (8) for FD
kinematics or Eq. (19) into Eq. (18) for the RD model leads
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Fig. 12. EP2: Simulation results of the set-point regulation task tested under practical conditions. In the middle column, the time evolution
of ‖ e‖ is shown in the logarithmic scale.
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to

[
v1

v2

]
=

[
φ1s2β + φ2

1
L

sβcβ

φ1Lsβcβ + φ2c2β

]
=

[
s2β + 1

L
sβcβ

Lsβcβ + c2β

][
φ1

φ2

]

=
([

1 0

0 1

]
+

[
−c2β 1

L
sβcβ

Lsβcβ −s2β

]) [
φ1

φ2

]
= φ + F(β)φ.

Using now definition (13) allows us to write β = βd (φ) − ed

and consequently v = φ + F(ed, βd(φ))φ = φ + ε(ed, φ).
Next, we show that ε(ed = 0, φ) = 0. For ed = 0 and using

Eq. (10) or Eq. (20), one obtains

[
ε1(ed = 0, φ)

ε2(ed = 0, φ)

]
=

[
−φ1c2βd + 1

L

(
Lφ1cβd

)
cβd

Lsβd

(
1
L
φ2sβd

) − φ2s2βd

]
=

[
0

0

]
,

where the argument φ of βd has been omitted for
compactness.
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