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Abstract: Articulated vehicles are the popular means of freight and public transportation.
Current trends and development forecasts indicate an increase of their use in the near future,
mainly for economic and environmental reasons. Modular High Capacity Vehicles and articulated
urban buses are the examples of modern transportation solutions that require agile maneuvering
in cluttered spaces. Since maneuvering with articulated vehicles is a highly non-intuitive and
burdening process for human-drivers, it seems reasonable to equip this kind of vehicles with
systems which provide (semi-) autonomous maneuvering capabilities. In this paper, we consider
a modular cascade-like control design methodology that is applicable to intelligent articulated
vehicles enabling them to perform complex maneuvers either through a driver-assistance system
or in an autonomous control mode. First, we discuss key properties of the so-called N-trailer
kinematics, and the correspondence between practical motion problems defined for articulated
vehicles and their formulation in the control engineering language. Next, the modular cascade-
like control system structure is presented which allows solving various control tasks in a unified
manner for multi-body vehicles of different kinematic structures and any number of segments.
Solutions to selected control problems are illustrated by numerical and experimental results.

Keywords: articulated vehicles, tractor-trailers (N-trailers), intelligent vehicles, wheeled mobile
robots, kinematics, nonlinear cascade control

1. INTRODUCTION

Articulated vehicles are the popular means of freight and
public transportation. According to the trends observed
today and development forecasts one shall expect increas-
ing demand in using longer multi-articulated vehicles in
the near future, motivated mainly by the economic and
environmental reasons, see Leduc (2009), Odhams et al.
(2009), HTAS EMS (2014). The modular High Capacity
Vehicles, multi-articulated urban buses, multi-trailer road-
trains and tractor-trailers agricultural vehicles are the
examples of modern transportation solutions that require
agile maneuvering, often in highly cluttered workspaces.
Maneuvering with long multi-articulated vehicles in the
presence of constraints imposed on a vehicle state is in-
herently a highly nonlinear process, being non-intuitive
and burdening for human-drivers, especially when complex
maneuvers have to be performed within the long-term
tasks characteristic to the agriculture, mining, and public
or freight transportation. As a consequence, people more
and more often decline or feel discouraged to take the
transportation duties in these difficult working conditions.
It seems, thus, reasonable and highly justified to equip the
articulated vehicles with intelligent systems which would
assist the drivers in performing complex maneuvers or even
replace some hand-made work with (semi-) autonomous
maneuvering capabilities. Indeed, one observes today an
increasing trend to automate the articulated vehicles on
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various automation levels (see Society of Automotive Engi-
neers (2016)), including the case of an autonomous motion
recently proposed for the farm vehicles, terminal tractors,
and the truck-semitrailer freight vehicles, see Fig. 1.

On the other side, kinematic models of nonholonomic
articulated structures are complex dynamical systems, rich
in interesting properties which explain why and under
which conditions maneuvering with these structures is so
difficult. To make the control design problem tractable in
a general case, the models of articulated vehicles should
be compact and generic in order to structure and simplify
their analysis and usage. Moreover, the resultant control
system is expected to be modular (in the context of var-
ious motion tasks), relatively simple in practical imple-
mentation (limited computational resources), and scalable
with respect to the number of vehicle segments. All the
mentioned requirements make the control design issue a
challenging problem.

The aim of this paper is to review and generalize selected
recent developments and results, mainly of the author
and his co-workers, in the context of a modular cascade-
like control design methodology for the multi-articulated
nonholonomic ground vehicles. In Section 2, we discuss
the key properties of the so-called N-trailer kinematics,
addressing next (in Section 3) the correspondence between
practical motion problems defined for articulated vehicles,
and their formulation in the language of control engi-
neering. Section 4 is devoted to a description of a mod-
ular and scalable cascade-like control system which allows
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Fig. 1. Examples of automated articulated vehicles: the Volvo’s autonomous truck concept Vera (left), the Case IH’s autonomous
tractor-trailer concept (middle), and the Terberg’s AutoTUG terminal tractor (right); sources of photos: images.volvotrucks.com,
www.caseih.com, angletsurfphoto.info/?s=Special+Vehicles+Terberg (all the pictures by permission)

solving various motion control tasks in a unified manner
for articulated vehicles of different kinematic structures
and an arbitrary number of segments. Section 5 illustrates
selected experimental results obtained with a laboratory-
scale articulated vehicle. Comments and open problems
are provided in Section 6.

2. MODELLING OF ARTICULATED VEHICLES

We will restrict the subsequent considerations to vehicle
structures with fixed (non-steerable) wheels; for modelling
of the multi-steering N-trailers a reader is referred, e.g., to
Tilbury et al. (1995) and Orosco-Guerrero et al. (2002).

2.1 Kinematic configuration, parameters, and relationships

Let us consider the N-trailer vehicle presented schemati-
cally in Fig. 2. The vehicles comprises N + 1 unicycle-like

Fig. 2. Kinematic skeleton of an articulated N-trailer vehicle in a
global frame {xG, yG}; θi is an orientation of segment ith

segments interconnected in an open kinematic chain by

passive pivoting joints. The only active (driven) segment
is a tractor numbered by 0, while any ith segment for
i = 1, . . . , N is passive (non-driven). One distinguishes two
types of kinematic parameters for this kind of vehicles: the
segment length Li > 0 and the hitching offset Lhi ∈ R for
i = 1, . . . , N . If Lhi = 0 than we say about the on-axle
hitching for the ith connection; in the opposite case we say
about the off-axle hitching. The off-axle hitching can be
either with a positive offset (Lhi > 0) if the hitching point
in located behind the wheels axle of a preceding segment,
or with a negative offset (Lhi < 0) if the hitching point in
located in front of the wheels axle of a preceding segment.
Configuration of the N-trailer, uniquely describing a pose
and a shape of the articulated vehicle, can be represented
by the vector

q = [β1 . . . βN θj xj yj ]
⊤ ∈ Q = T

N × R
3, (1)

where [β1 . . . βN ]⊤ = β ∈ T
N consists of the joint angles

βi , θi−1 − θi, (2)

(see Fig. 2) and will be called the shape configuration,
whereas [θj xj yj ]

⊤ = qj ∈ R
3 will be called the

pose configuration representing an orientation angle and
position coordinates of a selected jth vehicle segment,
j ∈ {0, . . . , N}.

Motion of an every ith vehicle segment can be charac-
terized by (pseudo-) velocity vector ui = [ωi vi]

⊤ ∈ R
2

comprising the angular velocity ωi of a segment and a lon-
gitudinal velocity vi of a mid-point of its wheels axle (see
Fig. 2). For i = 0, one obtains the real kinematic control
input in the form of tractor velocities u0 = [ω0 v0]⊤.

Remark 1. Assumption about the unicycle-like vehicle
segments is not very limiting. In the case where the tractor
has got the rear-driven car-like kinematics the configura-
tion vector (1) is usually extended with a steering-wheel
angle β0 ∈ (−π/2;π/2), and the kinematic control input
is redefined to u = [ζ0 v0]⊤, where ζ0 is a steering rate
of the front effective wheel. A correspondence between
the unicycle control input u0 = [ω0 v0]⊤ and the car-
like control input u has been widely addressed – see, e.g.,
Micha lek and Koz lowski (2012).

Upon elementary geometry, one can easily observe that the
velocities of every two neighbouring segments are related
by the following equation

ui =

[

−
Lhi

Li

cosβi

1

Li

sinβi

Lhi sinβi cosβi

]

︸ ︷︷ ︸

Ji(βi)

ui−1, (3)
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Fig. 3. Schematic representation of the cascade-form generic kinematic model of N-trailer vehicles with fixed wheels; the mapping P (q)
allows transforming posture qN to posture qj of any selected jth vehicle segment, see Micha lek and Pazderski (2018b)

where Ji(βi) is a velocity transformation matrix having a
well-determined inverse J−1

i (βi) if only Lhi 6= 0 allowing
one to write

ui−1 =

[

−
Li

Lhi

cosβi

1

Lhi

sinβi

Li sinβi cosβi

]

︸ ︷︷ ︸

J
−1

i
(βi)

ui. (4)

Let us introduce the vectors c⊤ = [1 0] and d⊤ = [0 1], and

an auxiliary matrix Γi(βi) , I − Ji(βi), where I ∈ R
2×2

is an identity matrix. Now, one can write ωi = c⊤ui and
vi = d⊤ui. Thus, by time-differentiation of (2) we have

β̇i = ωi−1 − ωi = c⊤ [ui−1 − ui]

(3)
= c⊤[J−1

i (βi) − I]ui = c⊤Γi(βi)J
−1
i (βi)ui, (5)

which is valid for i = 1, . . . , N . Kinematics of the jth ve-
hicle segment, under the rolling-without-skidding motion
conditions, can be described by the unicycle-like model

q̇j ,





θ̇j
ẋj

ẏj



 =





c⊤

d⊤ cos θj
d⊤ sin θj





[
ωj

vj

]

=: G(θj)uj . (6)

Combination of (5) for i = 1, . . . , N and (6), together with
transformation (3), leads to a generic kinematic model of
the N-trailer in the form (see Micha lek (2013b))

β̇1 = c⊤Γ1(β1)u0,

β̇2 = c⊤Γ2(β2)J1(β1)u0,

...

β̇N = c⊤ΓN (βN )JN−1(βN−1) . . .J1(β1)u0,

q̇j = G(θj)Jj(βj) . . .J1(β1)u0,

where q̇0 = G(θ0)u0 for j = 0. The above set of equations
can be rewritten in a more compact form as

q̇ =

[

β̇
q̇j

]

=

[
Sβ(β)

Sj(β, qj)

] [
ω0

v0

]

= S(q)u0 (7)

= s1(q)ω0 + s2(q)v0, (8)

where s1(q), s2(q) are the columns of matrix S(q) ∈
R

(N+3)×2, while Sβ(β) ∈ R
N×2 and Sj(β, qj) ∈ R

3×2

are the shape- and pose-kinematics matrices, respectively,
of the forms

Sβ(β) =








c⊤Γ1(β1)
c⊤Γ2(β2)J1(β1)

...
c⊤ΓN (βN )JN−1(βN−1) . . .J1(β1)







, (9)

Sj(β, qj) = G(θj)Jj(βj) . . .J1(β1) (10)

=





c⊤Jj(βj) . . .J1(β1)
d⊤Jj(βj) . . .J1(β1) cos θj
d⊤Jj(βj) . . .J1(β1) sin θj



 . (11)

The above modular formulation of the N-trailer kinematics
can be graphically represented by the block scheme shown
in Fig. 3. Compact nature of the model (7), together with
particular properties of matrices Ji(βi) and G(θj), are
very convenient, e.g., for the control design and stability
analysis. According to the number M of the off-axle
hitching present in a vehicle (corresponding to a number
of Lhi 6= 0 in equation (9)), one distinguishes three main
families of N-trailer vehicles (see Micha lek (2012a)):

• the Standard N-Trailers (SNT) if M = 0,
• the Generalized N-Trailers (GNT) if 0 < M < N ,
• the non-Standard N-Trailers (nSNT) if M = N .

Properties of the N-trailer vehicles critically depend on
the number M . This dependence will be discussed in the
next subsection. It is worth to comment here that the
SNT structures, mainly due to mechanical construction
difficulties and lower maneuvering capabilities, are of much
less practical importance (but of a theoretical significance)
than the GNT and nSNT structures, which are widely
applied in various transportation vehicles.

Following Altafini (2001), in every ith vehicle joint one
can define the so-called virtual steering wheel illustrated
in Fig. 4, which determines an instantaneous direction of
longitudinal velocity µi of the ith joint. The ith virtual
steering angle comes from the equation (cf. Altafini (2001))

δi(βi, κi−1) , βi − arctan (Lhiκi−1) , (12)

where

κi−1 , ωi−1/vi−1 (13)

is a motion curvature of a preceding (i− 1) segment. One
can easily show that a motion curvature of the ith segment
can be expressed with the virtual steering angle, that is,

κi =
1

Li

tan δi
(12)
=

1

Li

tan (βi − arctan (Lhiκi−1)) , (14)
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Fig. 4. Kinematic pair of two neighbouring segments and the
concept of a virtual steering wheel, Altafini (2001)

which is valid for i = 1, . . . , N ; for i = 0 the motion
curvature of the tractor reduces to κ0 = ω0/v0. Note
that (14) is a recursive formula with respect to (w.r.t)
a curvature, that is, κi = κi(βi, κi−1) if Lhi 6= 0.

2.2 Kinematic properties of articulated vehicles

Articulated vehicles are very specific systems because
their kinematics combine numerous interesting properties
which are sources of their complex behaviour, and explain
why maneuvering with N-trailers is so difficult and non-
intuitive for human-drivers. The N-trailers belong to rare
examples of systems which are both practically important
and theoretically interesting, having a potential of joining
both the industrial as well as academic communities. We
will review the key properties of the N-trailers dividing
them into those properties characterizing (7) as a dy-
namical system, and those more related to control design
problems.

System-related properties: Kinematics (7) is a two-input
nonlinear driftless dynamical system, with a dense set E
of equilibria, that is, E = {(q,u0) : q ∈ Q,u0 = 0}. It
is also nonholonomic in nature – kinematics (7) is valid
only if all the vehicle wheels are purely rolling without
skidding, that is, when the N+1 nonintegrable constraints
ẋi sin θi − ẏi cos θi = 0 are satisfied for all i = 0, 1, . . . , N .
The number of configuration variables is (much) less than
the number of control inputs, i.e., dim(q)−dim(u0) = N+
3−2 = N +1. The latter property makes some researchers
call the N-trailers underactuated systems, Altafini (2001).
Note, however, that the term underactuation is usually
reserved in mechanics for those systems which have got
more degrees of freedom (DOF) than control inputs; it
does not hold in the case of kinematics (7) because DOF =
N + 3 − (N + 1) = 2 = dim(u0) where N + 1 denotes the
number of nonholonomic constraints. Note also, that the
shape-kinematics, represented by subsystem β̇ = Sβ(β)u0

has a lower-triangular structure which is useful, e.g., in the
stability analysis.

In the case of nSNT kinematics, a multiple usage of
velocity mapping (4) allows one to rewrite (7) with any
other velocity vector ui, i > 0, treated as a control
input. For example, if one is interested to express nSNT
kinematics with uN viewed as an input, the application of
mapping (4) leads to

u0 =

N∏

i=1

J−1
i (βi)uN ,

and by substituting the right-hand side of the latter for-

mula into (7) in place of u0 gives q̇ = S(q)
∏N

i=1 J
−1
i (βi)uN

with an upper-triangular structure of the matrix S∗
β(β) =

Sβ(β)
∏N

i=1 J
−1
i (βi) in the form

S∗
β(β) =








c⊤Γ1(β1)J−1
1 (β1)J−1

2 (β2) . . .J−1
N (βN )

c⊤Γ2(β2)J−1
2 (β2) . . .J−1

N (βN )
...

c⊤ΓN (βN )J−1
N (βN )







.

Note that the above upper-triangular form cannot be
so flexibly obtained for the SNT nor GNT kinematics,
since for any Lhi = 0 the corresponding transformation
matrix Ji(βi) is singular. This unique property of the
nSNT structure, which will be directly used to the control
design purposes in Section 4, was a motivation of Micha lek
(2012a) to distinguish the nSNT kinematics from a wider
set of the N-trailers classified in the literature before, see
Altafini (2001); Lizarraga et al. (2001).

Some important properties of kinematics (7) critically
depend on the signs of hitching offsets Lhi 6= 0 together
with a sign of the tractor longitudinal velocity v0 (that
is, the sign of the second control input). These properties
can be explained by addressing stability of a practically
important equilibrium of shape-kinematics characterized
by β = 0 (zero-equilibrium), and corresponding to the
steady motion conditions where the tractor moves with
a constant non-zero input u0 = [0 V ]⊤, V = const and
all the vehicle segments are lined-up. In other words, we
consider under which conditions the vehicle chain will
has a tendency to fold in (one or more) joints. This
property was addressed by a simulation case study for
the N-trailers already in Martinez et al. (2008), while it
was formally investigated for a general case in Micha lek
(2013b). Computing a Taylor approximation of kinematics
(7) around the steady motion conditions corresponding to
β = 0, θj = 0 and u0 = [0 V ]⊤, with a constant velocity
V 6= 0, leads to the following, locally valid, transfer
functions

G01(s) ,
β1(s)

ω0(s)
=

K1

(1 + L1

V
s)
,

G0i(s) ,
βi(s)

ω0(s)
=

Ki

(1 + Li

V
s)

·

i−1∏

j=1

(1 −
Lhj

V
s)

(1 +
Lj

V
s)

, i ≥ 2,

where Kj = (Lj +Lhj)/V is a static gain for the jth joint
angle dynamics. One easily verifies that the joint angles
will diverge from the point β = 0 if the velocity V < 0
(structural instability in backward motion). This is a well
known vehicle-folding effect observable during reversing
with trailers. What is more interesting, the numerator of
G0i(s) is a polynomial having a positive real zero if only
(Lhj/V ) > 0. In particular, for V > 0 (forward motion of a
vehicle) and Lhi > 0, the positive zeros of transfer function
G0i(s) for i ≥ 2 make G0i(s) the non-minimum-phase
(NMP) dynamics. Every off-axle hitching in a vehicle chain
adds additional zero to G0i(s). As a consequence, in the
response of joint angles βi(t) for i ≥ 2 one shall expect
such phenomena as (see Seron et al. (1997); Hoagg and
Bernstein (2007)) an initial undershoot, initial oscillations
(and zero crossings) or even an overshoot (despite the
presence of strictly real poles in G0i(s)), which can be
dangerous for the vehicle and its neighbourhood when
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maneuvering in tight cluttered workspaces. The exemplary
responses of the joint angles for the nS3T kinematics have
been presented in Fig. 5, where the grey lines denote
responses of approximated linear dynamics G0i for i =
1, 2, 3, whereas dark lines correspond to experimental data
obtained with a laboratory-scale nS3T vehicle. One clearly
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Fig. 5. Transients of the joint angles of nS3T kinematics in forward
motion conditions: the response to an angular velocity ω0

step-change applied at t ≈ 3 s (grey lines: simulations of
approximated linear dynamics; dark lines: experimental data)

observes undershoot in the second joint angle, and initial
oscillations (with two zero crossings) for the third joint
angle. According to results presented in Micha lek (2013b),
the non-minimum-phase effects are amplified along a ve-
hicle chain if (Lhi/Li) ≥ 1 and attenuated along a chain if
(Lhi/Li) < 1. Similar effects are observed for orientation
angles θi(t) of the vehicle segments explainable upon a
form of the transfer function

H0i(s) ,
θi(s)

ω0(s)
=

1

s
·

i∏

j=1

(1 −
Lhj

V
s)

(1 +
Lj

V
s)

, i ≥ 1.

Control-related properties: A level of difficulty in con-
trolling the N-trailer kinematics can be inferred in part
by analysing a change in degrees of Lie brackets of the
basic vector fields s1(q) and s2(q) introduced in (8) for
various subsets of the configuration space Q. In the works
of Jean (1996) and Altafini (2001), it was shown that
the highest degree of a Lie bracket needed to span the
configuration space (the degree of nonholonomy) increases
in the singular configurations qs ∈ Qs ⊂ Q determined by
the zero-measure set

Qs =
{

q :
(

βi =
π

2
mod π

)

∪
(

δl =
π

2
mod π

)}

,

for any i ∈ {1, . . . , N−1} and any virtual steering angle δl
defined by (12) with indexes l belonging to the index set
Ioff corresponding to the off-axle interconnections in the
N-trailer vehicle (for the SNT kinematics δi ≡ βi, cf. (12),
thus the second condition used in the definition of Qs re-
duces to the first one). One shall expect that maneuvering
with the N-trailers in the singular configurations becomes
more difficult than in regular configurations. Local con-
trollability of the N-trailer (7) in regular configurations,
i.e. for q ∈ Q \ Qs, was proven by Altafini (2001) for
the GNT kinematics, and in both regular and singular
configurations by Laumond (1993) and Jean (1996) for
the SNT kinematics (see also Barraquand and Latombe
(1993) and a generalization to the n-bar system in Li and
Respondek (2011)).

Structural instability of the shape-kinematics in backward
motion conditions, and especially the NMP property of
angular dynamics (discussed above) in forward motion
due to the presence of the positive hitching offsets impose

fundamental limitations on the achievable control perfor-
mance with the N-trailers – a more detailed treatment
can be found for nonlinear systems in Aguiar et al. (2008),
for the N-trailers in Micha lek (2013b), and also for linear
systems in Hoagg and Bernstein (2007), Seron et al. (1997).
Let us stress here that the NMP property makes the for-
ward tracking with positive hitching offsets a challenging
control problem for the nSNT and GNT kinematics if the
guidance point is located on the trailer. Solutions to this
problem have been recently provided, e.g., in Leng and
Minor (2017) and Micha lek and Pazderski (2018b).

Finally, let us consider the differential flatness property
introduced and addressed in the context of N-trailers by
Rouchon et al. (1993) and next extended by Li and Re-
spondek (2012). The two-input system (8) is differentially
flat if there exist two differentially independent functions
f1, f2 (the flat outputs), generally dependent on q, u0,
and possibly time-derivatives of u0, such that all the
configuration variables q and control inputs u0 can be
expressed by the flat outputs f1, f2 and (possibly) their
time-derivatives up to some order. According to the work
of Rouchon et al. (1993), the SNT kinematics is differ-
entially flat. The most popular flat outputs in this case
are position coordinates (xN , yN ) of the last trailer; other
possible flat outputs for the SNT kinematics have been
revealed in Li and Respondek (2012). It is well known
that the differential flatness property reduces the problem
of finding an admissible reference trajectory or reference
path for the complex N-trailer system (8) to a simpler
problem of finding a sufficiently smooth trajectory/path
for the flat outputs only. From the control point of view,
the differentially flat SNT kinematics can be transformed
into a canonical model called the chained system, as it was
shown in Sørdalen (1993), and is feedback linearizable by
a dynamic feedback. Due to the mentioned benefits, dif-
ferential flatness of the SNT vehicles was widely exploited
in the problems of motion planning and feedback control
design by various investigators. Unfortunately, the GNT
and nSNT kinematics are generally not differentially flat.
An exception is when a vehicle is a 1-trailer and comprises
only a single off-axle hitching (N = M = 1), or in a
multi-trailer vehicle where any two successive hitching in a
vehicle chain are both not of the off-axle type, see Rouchon
et al. (1993) and Morin and Samson (2008a), Minguez
et al. (2008), Pradalier and Usher (2008). For the N-trailers
with more than one successive off-axle hitching (M > 1)
the differential flatness is lost, and the kinematics (8) is no
more feedback-equivalent to a linear system. In this case,
the reference signals computations (see, e.g., Micha lek and
Pazderski (2018a)), motion planning, and feedback control
design for system (8) become the non-trivial problems.
Until recently, the literature on these topics was relatively
rare, and new results are still needed. Section 4 illustrates
selected results in the context of feedback control for the
non-flat nSNT vehicles.

Remark 2. Qualitative differences between the on-axle
and off-axle interconnections in the N-trailers (and, to
some extent, also consequences of a flatness loss) can be
explained upon the form of iterative formula (14) relat-
ing curvatures of the neighbouring vehicle segments. Let
us introduce the inverse posture mapping (using a short
notation cα ≡ cosα, sα ≡ sinα)
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invQ(qi, βi) =

[
θi + βi

xi + Licθi + Lhic(θi + βi)
yi + Lisθi + Lhis(θi + βi)

]

, (15)

which comes from elementary geometrical arguments (see
Fig. 2 and Micha lek and Pazderski (2018b)), and allows
one to compute a posture of the (i− 1)st segment qi−1 =
invQ(qi, βi) upon a given posture of the ith segment qi
and a known joint angle βi. In the context of flatness, let
us discuss if it is possible to infer an instantaneous posture
qi−1 and a motion curvature κi−1 of a preceding vehicle
segment and a shape (corresponding to angle βi) of the
segments pair upon a knowledge of only an instantaneous
posture qi and a motion curvature κi for the ith vehicle
segment (i > 0). An answer to this question depends on
the interconnection type (on-axle/off-axle) between the
segments. In the case of on-axle hitching (that is, for
Lhi = 0) the curvature of the ith vehicle segment depends
solely on the joint angle βi: if one knows κi then the
angle βi can be computed directly upon (14). Next, one
can use mapping (15) to compute qi−1. By repeating this
procedure it is possible to reconstruct any posture qj and
any angle βj for 0 ≤ j < i. On the other hand, for the on-
axle hitching it is not possible to infer both components of
velocity ui−1 directly upon velocity ui, even if the angle βi

is available 1 . This is a direct consequence of the fact that
ωi−1 does not have any direct influence on components of
velocity ui leading to a singularity of matrix Ji(βi), see
(3) and (4). All the conclusions discussed above for the
case of on-axle hitching can be summarized as follows:

on-axle:

{

κi

(14)
=⇒ βi

qi ⇐⇒ qi

}

invQ
=⇒ qi−1 , (16)

on-axle:

{
ui

βi

}

6
(4)

=⇒ ui−1
, (17)

For the off-axle hitching case, the iterative formula (14)
combines both the joint angle βi and the motion curvature
κi−1 of a preceding segment. Hence, it is not possible to
compute both βi and κi−1 using only (14). The latter
obstruction is more fundamental because, indeed, the same
motion curvature κi can be obtained for infinitely many
combinations of a joint angle βi and a motion curvature
κi−1. As a consequence, it is not possible in this case
to uniquely determine qi−1 upon the assumed piece of
knowledge about the ith segment. On the other hand, in
contrast to the on-axle hitching case, the transformation
matrix Ji(βi) is non-singular now, and one can infer
velocity ui−1 directly upon velocity ui by using (4) if
the angle βi is available. (If βi is not available, it is not
possible to infer neither ui−1 nor κi−1 upon the assumed
piece of knowledge about the ith segment.) The above
considerations can be summarized as follows:

off-axle:

{

κi 6
(14)
=⇒ βi

qi ⇐⇒ qi

}

6
invQ
=⇒ qi−1 , (18)

off-axle:

{
ui

βi

}

(4)
=⇒ ui−1

. (19)

By comparing (16)-(17) with (18)-(17), one can observe
that the on-axle hitching is more beneficial in inferring
postures of particular segments along a vehicle chain,

1 Although, ui−1(t) can be inferred upon ui(t) and βi(t) by using
additionally the time derivative κ̇i(t), if it is available.

while the off-axle hitching is more beneficial in inferring
velocities of particular segments along a vehicle chain. The
latter capability will be directly used to the purpose of
cascade-like control system design addressed in Section 4.

3. MOTION TASKS AND CONTROL PROBLEMS

This section discusses five types of motion tasks being
defined for the N-trailer vehicles followed by the more
formally defined corresponding control problems.

3.1 A guidance point of a vehicle

A vehicle pose configuration represented by vector qj =
[θj xj yj ]

⊤ in (1) usually represents the vehicle segment
which consists of variables measurable by a vehicle local-
ization system. Selection of qj is therefore not completely
free, but it is rather determined by a particular localization
system used for a vehicle. From the control problem point
of view, one usually has to define the so-called guidance
point for a vehicle, which represents a point of the most
importance in the context of a motion task considered. Let
us define the guidance point by some pose configuration
ql = [θl xl yl]

⊤, which can be either fixed to the vehicle
(being a pose of a vehicle segment for l ∈ {0, . . . , N}) or
located outside the vehicle body, see Lizarraga et al. (2001)
, or can be even configuration-dependent as in Micha lek
(2015). Most of the motion tasks and control problems
will be defined w.r.t. this point, which will be the main
output of the system (7), that is (cf. Fig. 3),

y , ql = H(q) ∈ R
3, (20)

where the output mapping H(q) takes the form

H =







[03×N I3×3] q if l = j
invQ(. . . invQ(qj , βj), . . .

︸ ︷︷ ︸

ql+1

, βl+1) if l < j

Q(. . .Q(qj , βj+1), . . .
︸ ︷︷ ︸

ql−1

, βl) if l > j
(21)

determined with the inverse posture mapping (15) and
the direct posture mapping (see Micha lek and Pazderski
(2018b))

Q(qi−1, βi) =

[
θi−1 − βi

xi−1 − Lic(θi−1 − βi) − Lhicθi−1

yi−1 − Lis(θi−1 − βi) − Lhisθi−1

]

(22)

such that qi = Q(qi−1, βi). In general, ql and qj can
concern poses of two different vehicle segments. Moreover,
selection of the guidance point ql may depend on a control
problem under consideration and on a required vehicle
motion strategy (forward/backward). The most commonly
selected guidance points for the classical control tasks (like
the stabilization at a point, trajectory-tracking, and path-
following) are fixed to l = N (the last trailer) or l = 0 (the
tractor unit).

In the case where only joint angles β are important from
the control objective viewpoint, the output is defined as

y , β = [IN×N 0N×3] q ∈ R
3. (23)

3.2 Docking with a trailer: the point-stabilization problem

The task of docking with the last trailer relies on placing
the last vehicle segment in a constant target (reference)
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Fig. 6. Explanation of the point-stabilization problem for the case
of βr = 0

pose qNr = [θNr xNr yNr]⊤ and keep it in the steady state
after reaching the target pose. This problem naturally
arises, e.g., in the parking for loading/unloading tasks
of freight articulated trucks or in positioning of a rear-
mounted pantograph in electric articulated buses. Such a
formulation of the docking task is an input-output control
problem for the main output defined by (20) for l = N .
One can complement this task by the requirement of mov-
ing the joint angles β to some predefined constant refer-
ence βr. In general, βr can be arbitrary, but such a control
problem is extremely difficult, especially for differentially
non-flat N-trailer kinematics (see, e.g., Morin and Samson
(2008b), Lizarraga et al. (2001), and Vendittelli and Oriolo
(2000)). A simpler special case is when βr = 0 which
corresponds to the lined all the vehicle segments up in
the terminal configuration qr = [0⊤ q⊤

Nr]⊤. This problem
has been illustrated in Fig. 6. In order to formally define
the point-stabilization (PS) problem let us introduce the
stabilization error

eps(t) :=

[

β̃(t)
eN (t)

]

,

[
βr − β(t)

qNr − qN (t)

]

∈ Q, (24)

where β̃(t) is the shape-error, whereas eN (t) is the pose-
error.

Definition 3. (PS control problem). Given a bounded ref-
erence configuration qr = [β⊤

r q⊤
Nr]⊤ = const (i.e.,

q̇r ≡ 0), find a feedback control law u0 = u0(qr, q, ·) for
the N-trailer kinematics (7), which makes a response of
the closed-loop system q̇ = S(q)u0(qr, q, ·) bounded and
convergent in the sense that: ∀ t ≥ 0 ‖ eps(t)‖ < ∞ and
∀ t ≥ T ‖ eps(t)‖ ≤ δ for some vicinity δ ≥ 0, some control
time-horizon T ∈ [0;∞), and for all initial conditions
eps(0) ∈ E0 ⊆ Q.

In the above definition, the asymptotic convergence corre-
sponds to δ = 0, while the practical convergence to δ > 0.
Since the N-trailer kinematics is a nonholonomic driftless
system, the PS control problem cannot be solved for δ = 0
neither by using linear approximation methods nor by any
continuous pure state feedback law, see Brockett et al.
(1982) and Zabczyk (1989).

3.3 Moving in time: the trajectory-tracking problem

When the articulated vehicle has to track some (usu-
ally preprogrammed) time-varying configuration qr(t) =

[β⊤
r (t) q⊤

lr(t)]⊤, called the reference trajectory, the motion
task requires synchronization of motion geometry with a
time flow leading to the trajectory-tracking problem. An
example of such a task is tracking the moving harvester
tip by one of the vehicle trailers during the agricultural
field works. In this case, the harvester tip determines only
an instantaneous reference pose qlr(t) for the selected lth
vehicle segment which must be currently filled with a
grain. Therefore, tracking the pose qlr(t) is the main input-
output control objective here. The corresponding reference
shape-configuration βr(t) must be found upon the refer-
ence pose qlr(t) in a way to satisfy constraints imposed
by model (7). For the differentially non-flat kinematics
(nSNT and GNT) such a compatible reference shape-
configuration βr(t) could be searched as a solution of the
following exogenous system

β̇r(t) = Sβ(βr(t))

l∏

i=1

J−1
i (βir(t))ulr(t), (25)

where the matrix Sβ has been determined by (9), while
ulr(t) is a given function of time corresponding to the
reference pose qlr(t) through unicycle kinematics similar
to (6). Except the simplest cases of rectilinear and circular
reference pose trajectories, finding a closed-form solution
of (25) seems impossible. Moreover, finding βr(t) is non-
trivial also because it is a non-unique problem. For in-
stance, if the reference pose qlr(t) is time-periodic there
exist probably at least 2N number of different reference
shape-trajectories βr(t) corresponding to the same refer-
ence evolution of pose qlr(t). This issue has been recently
explained by Micha lek and Pazderski (2018a), where eight
different shape-configurations βr were computed for the
3-trailer kinematics in the case of a circular motion of
the last vehicle segment (every solution βr corresponds
to either folded or non-folded configuration of the ith
joint, i = 1, . . . , N). The question is how to find the
only one expected reference shape-trajectory βr(t) which
does not involve any folding of an articulated vehicle
(due to the presence of strict mechanical limitations in
angular positions for joints in every practical articulated
vehicle). In this context, the so called segment-platooning
(S-P) reference trajectories qr(t) have been introduced by
Micha lek (2017) and by Micha lek and Pazderski (2018a),
which additionally to equation (25) must satisfy the S-P
condition

∀βr(t) vi−1r(βr(t),ulr(t)) · vir(βr(t),ulr(t)) > 0 (26)

for all i = 1, . . . , N , where vir = d⊤uir can be expressed
with ulr(t) and βr(t) by using transformations (3) or
(4), depending on whether i > l or i < l. The S-P
condition requires that all the reference segments of a
reference vehicle must move with the same signs of their
reference longitudinal velocities (i.e., all moving forward or
all backward). Note that (26) prevents the folding effect
for the reference N-trailer kinematics, and simultaneously
leads to the persistently exciting reference trajectory with
‖ulr(t)‖ > 0 for all t ≥ 0 and any l ∈ {0, . . . , N}. Now,
selection of an admissible shape-configuration βr(t) for
the nSNT kinematics is possible by checking the solutions
of (25) for satisfaction of the S-P condition (26). The
trajectory-tracking problem has been illustrated in Fig. 7.
In order to formally define the trajectory-tracking (TT)
problem let us introduce the tracking error
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Fig. 7. Explanation of the trajectory-tracking problem with a
guiding point located on the last trailer (i.e., for l = N)

ett(t) :=

[

β̃(t)
el(t)

]

,

[
βr(t) − β(t)
qlr(t) − ql(t)

]

∈ Q, (27)

where β̃(t) is the shape-error, whereas el(t) is the pose-
error.

Definition 4. (TT control problem). Given a preprogram-
med (known a priori) bounded and sufficiently smooth
reference trajectory qr(t) = [β⊤

r (t) q⊤
lr(t)]⊤ of the S-P

type, find a feedback control law u0 = u0(ett, t) for the
N-trailer kinematics (7), which makes a response of the
closed-loop error dynamics

ėtt = S(qr)
l∏

i=1

J−1
i (βir(t))ulr(t) − S(qr − ett)u0(ett, t)

bounded and convergent in the sense: ∀ t ≥ 0 ‖ ett(t)‖ <
∞ and ∀ t ≥ T ‖ ett(t)‖ ≤ δ for some vicinity δ ≥ 0,
some control time-horizon T ∈ [0;∞), and for all initial
conditions ett(0) ∈ E0 ⊆ Q.

In the above definition, the asymptotic tracking corre-
sponds to δ = 0, while the practical tracking corresponds
to δ > 0.

3.4 Moving along a path: the path-following problem

The task of following a predefined path is important
for numerous practical applications. Simple examples in-
clude guiding a trailer along a road lane or guiding a
trailer equipped with some implement along a passage
on a field in agriculture. In contrast to the trajectory-
tracking task, the time constraints are not directly im-
posed for the path-following task. In this case, time-
parametrization of reference signals is either replaced by
other kind of parametrization (usually by using a curvi-
linear path length) or the path is not parametrized at all,
while instead it is represented in a form of a zero-level
set of some two-dimensional function. Let us consider the
latter case, which is a relatively new approach, used for
the purpose of mobile robotics, e.g., in Morro et al. (2011),
Consolini et al. (2010), and for the N-trailers in Micha lek
(2014b). In this approach the reference positional path is
represented by a set of reference points

Pr , {(xlr, ylr) : F (xlr, ylr) , σf(xlr, ylr) = 0}, (28)

where f(xlr, ylr) = 0 determines equation of the reference
geometrical path, whereas a sign of σ ∈ R\{0} determines

Fig. 8. Explanation of the path-following problem with a guiding
point located on the last trailer (i.e., for l = N)

desired motion ’direction’ along the reference path and
its absolute value simultaneously scales the gradient of
function F (one assumes that f is sufficiently smooth w.r.t
its arguments). A reference orientation along the path is
defined by a tangency angle

θr(qlr) = Atan2c

(

−
∂F (xlr, ylr)

∂xlr

,
∂F (xlr, ylr)

∂ylr

)

∈ R,

where Atan2c (·, ·) : R×R → R is a continuous counterpart
of the four-quadrant Atan2 (·, ·) : R × R → (−π;π] func-
tion, see Micha lek (2014b). Note that evaluating F (·, ·) at
the current position (xl, yl) of a guidance point provides
information about a signed (generally non-Euclidean) dis-
tance between the guidance point and the reference path;
moreover, F (xl, yl) = 0 if and only if (xl, yl) = (xlr, ylr),
that is only on the reference path. In contrast to the clas-
sical curvilinearly parametrized approach, one avoids in
this way a necessity of finding the shortest distance to the
path which may be problematic in practical applications.
Definition of reference signals is complemented by impos-
ing some (usually constant) reference longitudinal velocity
vlr 6= 0 for the guidance segment along the path. The path-
following problem has been illustrated in Fig. 8. In order
to formally define the path-following (PF) problem let us
introduce the path-following error

epf(ql(t)) :=

[

β̃(ql(t))
ē(ql(t))

]

,





βr(ql(t)) − β(t)
[
ρ(θr(ql(t)) − θl(t))

F (xl(t), yl(t))

]



 , (29)

where epf ∈ Qpf = T
N×(−π;π]×R, ρ : R → (−π;π] limits

the orientation error to the bounded range, the terms θr(·)
and F (·, ·) have been determined at a current position of
the guidance point of a vehicle, and the reference joint
angles βr have been related to the current pose ql of the
guidance segment (due to the lack of a parametrization).
Generally, the reference angles βr should be computed
to conform to the S-P reference path (by analogy to
the S-P trajectories addressed in Section 3.3). Finding
a correspondence between βr and ql introduced in (29)
is, however, very difficult (if possible at all). Fortunately,
knowledge about the dependence βr(ql(t)) will not be
necessary to application of the cascade-like control law
discussed in Section 4.

Definition 5. (PF control problem). Given a preprogram-
med (a priori known) S-P reference positional path deter-
mined by the zero-level set (28) and the reference velocity
vlr 6= 0, find a feedback control law u0 = u0(epf, vlr)
for the N-trailer kinematics (7), which makes the path-
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following error (29) bounded and convergent in the sense
that: ∀ t ≥ 0 ‖ epf(ql(t))‖ < ∞ and ∀ t ≥ T ‖ epf(ql(t))‖ ≤
δ for some vicinity δ ≥ 0, some control time-horizon T ∈
[0;∞), and for all initial conditions epf(ql(0)) ∈ E0 ⊆ Qpf.

The asymptotic path-following corresponds to δ = 0, while
the practical path-following corresponds to δ > 0.

3.5 Keeping a lane: the averaged path-following problem

In the classical PF task discussed above, the reference
positional path has to be followed only by a single selected
vehicle segment, namely, by the guidance segment. In
many practical applications, however, the reference path
determines only a centre line for a motion corridor along
which the whole multi-body articulated vehicle is expected
to follow (at least in an averaged sense, see Altafini
(2002, 2003) and Micha lek (2015)); this corridor may be
determined, e.g., by a width of a highway lane. Thus in this
case, the motion problem is to follow within a corridor
around the reference path, simultaneously minimizing a
corridor-width occupied by the whole vehicle. This motion
scenario has been graphically illustrated in Fig. 9, where
vr 6= 0 denotes a longitudinal velocity of a reference
motion along the path. Minimization of the corridor-width

Fig. 9. Explanation of the averaged path-following problem; the
red line denotes a positional reference path (represented as a
level curve F (xr, yr) = 0), whereas the blue lines delimit a
corridor around the path within which the whole articulated
vehicle should stay during its motion

corresponds to minimization of the maximal off-track
drawn by any of the vehicle segments. In order to formally
define the averaged path-following (APF) problem let us
consider a positional reference path, represented by a set

Pr , {(xr, yr) : F (xr, yr) , σf(xr, yr) = 0}, (30)

σ ∈ R\{0}, and a corridor Bε ,
⋃

(xr,yr)∈Pr
B(xr, yr, ε) ⊂

R
2 around the path, being a union of 2-dimensional balls

B(xr, yr, ε) centered at (xr, yr) ∈ Pr and of some radius
ε > 0 (see Fig. 10). Introduce also the off-track error
e⊥i (xr, yr) for the ith vehicle segment, which is orthogonal
to the path, see Fig. 10. A norm of e⊥i (xr, yr) corresponds
to the shortest distance between position (xi, yi) of the ith
vehicle segment and the path at point (xr, yr).

Definition 6. (APF control problem). Find a feedback con-
trol law u0 = u0(q, vr) for the N-trailer kinematics (7),
which guarantees that there exists a finite T ≥ 0 such
that ∀ t ≥ T (xi(t), yi(t)) ∈ Bε for all i = 0, . . . , N , with a
minimal possible resultant corridor radius

Fig. 10. Corridor Bε around a reference path F (xr, yr) = 0 as a
union of balls B of radius ε > 0 centered at (xr, yr) ∈ Pr

ε = min

(

max
i=0,...,N

{

sup
(xr,yr)∈Pr

∥
∥ e⊥i (xr, yr)

∥
∥

})

. (31)

The APF control problem does not require (but does
not exclude) asymptotic path-following by any of the
vehicle segments, since it concerns the whole multi-body
kinematic chain of a vehicle. There exist only two special
cases of the APF which leads to ε = 0 (reducing the
APF to the PF task), that is, for the rectilinear reference
paths, and for the circular reference paths if additionally
the vehicle has nSNT kinematics with Lhi = Li for all
i = 1, . . . , N , see Bushnell et al. (1994).

3.6 Aligning vehicle segments: the lining-up problem

The last motion task concerns aligning all the vehicle
segments. Let us call it the lining-up (LU) problem, see
Micha lek (2014a). This is usually an auxiliary maneuver
which shall help preparing a vehicle to subsequent complex
motion tasks. In this case, the main output of kinematics
(7) is a joint-angle vector β(t) as defined by (23), while
evolution of a pose of any vehicle segment and a longitu-
dinal velocity vr 6= 0 of a maneuver should be bounded
but besides that are of a secondary importance. The LU
problem has been explained in Fig. 11. In order to formally

Fig. 11. Explanation of the lining-up problem for two possible
initial conditions: where the tractor is initially aligned with
a virtual reference tractor, and where the last trailer is aligned
with a virtual reference trailer (virtual reference vehicles are
highlighted in red)

define the LU problem let us introduce the lining-up error

elu(t) , [βr − β(t)] ∈ T
N with βr = 0. (32)

Definition 7. (LU control problem). Find a feedback con-
trol law u0 = u0(elu, vr) ≡ u0(β, vr) for the N-trailer kine-
matics (7), which makes the lining-up error (32) bounded
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and convergent in the sense that: ∀ t ≥ 0 ‖ elu(t)‖ < ∞ and
∀ t ≥ T ‖ elu(t)‖ ≤ δ for some vicinity δ ≥ 0, some control
time-horizon T ∈ [0;∞), and for all initial conditions
elu(0) ∈ E0 ⊆ T

N .

The asymptotic lining-up corresponds to δ = 0, while the
practical lining-up to δ > 0.

4. MODULAR CASCADE-LIKE CONTROL SCHEME

All the control problems defined in Section 3 can be solved
with a modular cascade-like control system which will
be introduced and discussed in the following subsections.
A similar cascade-like control approach was used, e.g.,
in Chung et al. (2011) and Morales et al. (2013); it
was applied there, however, under particular and limited
motion conditions. If not stated otherwise, we will assume
hereafter that l = j = N , thus the guidance point is
located on the last trailer, the pose of which is measurable
by a vehicle localization system.

4.1 A general control concept

The modular cascade-like control system for the N-trailer
vehicles is presented in Fig. 12. One can distinguish two

Fig. 12. Block scheme of the cascade-like modular control system for
intelligent articulated vehicles (VSB: Velocity Scaling Block)

control loops in the system: the outer loop (highlighted
in red) with a feedback from pose qN of the last vehicle
segment (treated here as a guiding segment), and the
inner loop (highlighted in blue) with a feedback from the
joint angles β (shape configuration). By this kind of a
control system structure one divides the control problem,
originally stated for the whole vehicle configuration, into
a primary objective of guiding the Nth vehicle segment
towards its reference pose, and a secondary objective of
guaranteeing boundedness and terminal convergence of
joint angles β to their corresponding reference values. In
this approach the inner loop plays an auxiliary role for the
primary control objective. From the theoretical viewpoint,
the above strategy corresponds to the input-output control
problem (with output y = qN ), where evolution of joint-
angles can be viewed as a response of internal dynamics
of the closed-loop system, see Isidori (1995) and Bolzern
et al. (2001).

The main idea in the proposed control scheme from Fig. 12
relies on treating the guiding segment as a vehicle of
unicycle-like kinematics (6) with virtual control input uN ,

and applying in the outer loop an appropriate (i.e., task-
dependent) control function Φ(·) originally devised for the
unicycle vehicle (numerous control functions of this type
have been proposed in the literature for various control
problems). The control function Φ(·) determines an in-
stantaneous desired 2 velocity for the guidance segment,
that is,

uNd , Φ(·). (33)
Since the desired velocity (33) cannot be directly forced
on the virtual input uN , the inner loop is responsible for
transforming desired velocity (33) to the corresponding
desired velocity u0d for the tractor (active) unit by using
some inter-segment mapping Ψ, that is,

u0d , Ψ(β,uNd)
(33)
= Ψ(β,Φ(·)). (34)

In this manner, the tractor by executing desired velocities
ω0d, v0d on its input u0 should force the guidance segment
move like a unicycle vehicle controlled by the outer-loop
control function Φ(·). The inter-segment mapping used in
(34) can be defined as the following composition

Ψ , Ψ1(β1,Ψ2(β2, . . . ,ΨN−1(βN−1,ΨN (βN ,uNd)) . . .))

= (Ψ1 ◦ Ψ2 ◦ . . . ◦ ΨN )(β,uNd), (35)

comprising the elementary inter-segment mappings

Ψi(βi,uid) =

{
ΨOFF

i (βi,uid) if Lhi 6= 0
ΨON

i (βi,uid) if Lhi = 0
, (36)

for i = 1, . . . , N , which map desired velocities between any
two neighbouring segments, that is, ui−1d = Ψi(βi,uid).
Particular forms of elementary inter-segment mappings
introduced in (36) depend on the interconnection type.
For the off-axle hitching in the ith joint one utilizes (4)
and defines

ΨOFF
i , J−1

i (βi)uid =

[

−
Li

Lhi

cβiωid +
1

Lhi

sβivid

Lisβiωid + cβivid

]

, (37)

whereas for the on-axle hitching in the ith joint one
proposes to take

ΨON
i ,

[

ki(βid − βi) + β̇id + ωid

ξ |Lisβiωid + cβivid|

]

(38)

with two design parameters ki > 0 and ξ ∈ {−1,+1}, and
with the desired (in contrast to the reference) joint angle

βid , Atan2c (Liωid ξ, vid ξ) ∈ R.

Note that (37) is a nonlinear but truly algebraic mapping,
well-determined if only Lhi 6= 0. On the other hand, the
first row of (38) defines an inner-loop control function,
with a proportional part ki(βid − βi) the the feedforward

part β̇id + ωid. A value of parameter ξ should be selected
according to the expected vehicle motion strategy, that
is, ξ = +1 for the forward motion, and ξ = −1 for the
backward one.

Remark 8. A separate mapping ΨON
i has been introduced

because in the case of on-axle hitching the transformation
matrix Ji is singular and (37) is not well determined.
However, in less demanding applications one can use,
instead of (38), an alternative definition

Ψ̂ON
i , Ĵ−1

i (βi)uid =

[

−
Li

ǫi
cβiωid +

1

ǫi
sβivid

Lisβiωid + cβivid

]

(39)

2 Note that, in general, uNd(t) 6≡ uNr(t), i.e., the desired velocity
is not equivalent to the reference one (but the former can terminally
converge to the latter).
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being an approximation of (37) for some (sufficiently
small) parameter ǫi 6= 0. In practice, a ’size’ of |ǫi|
should be selected carefully by taking into account possible
excessive amplification of feedback noises by using too
small values for |ǫi|.

It is worth emphasizing two key properties of the control
system from Fig. 12:

• Modularity – the same unified structure of the
cascade-like control system can be applied to vari-
ous control tasks (addressed in Section 3), only by
selecting an appropriate outer-loop control function
Φ(·) specialized for the task under consideration and
devised for unicycle-like kinematics of the guidance
segment.

• Scalability – the same unified structure of the
cascade-like control system can be applied to the N-
trailer vehicles with an arbitrary number of segments;
after changing the number of trailers, one needs only
to change a number of inter-segment mappings (36)
used in the inner-loop block (this operation can be
easily automated if the information about the actual
number of trailers is available).

The two properties mentioned above make the cascade-
like system a fairly universal control framework for the
N-trailers, which can be flexibly and relatively easily used
in various practical applications.

4.2 Addressing control input limitations

Modularity of the control system can be complemented by
the velocity scaling block (VSB), shown in Fig. 12, which
allows preserving kinematic control-input limitations of a
real vehicle. In the case of a unicycle-like tractor with the
independent control inputs limited by

∀ t ≥ 0 |ω0(t)| ≤ Ω ∧ |v0(t)| ≤ V, (40)

for some finite upper bounds Ω > 0, V > 0, one can apply
a simple on-line scaling procedure

u0s(t) , u0d(t)/max

{

1,
|ω0d(t)|

Ω
,
|v0d(t)|

V
,

}

, (41)

which transforms the nominally computed desired ve-
locities u0d into the scaled ones u0s already respecting
limitations (40). Moreover, procedure (41) simultaneously
preserve an instantaneous motion curvature of the trac-
tor in the sense that (ω0s/v0s) = (ω0d/v0d). The scaling
procedure (41) can be easily adopted to the case of a
differentially-driven tractor (with a maximal wheel veloc-
ity ωmax used as a limitation) and a car-like tractor, as
it was explained, respectively, in Micha lek and Koz lowski
(2010) and Micha lek and Koz lowski (2012).

4.3 Laboratory setup used for experimental verification

The next section illustrates selected results obtained us-
ing the laboratory setup designed and build in the Insti-
tute of Automation and Robotics at Poznan University
of Technology. The set-up consists of the RMP robotic
vehicle presented in Fig. 13, and an external vision-based
localization system. The vehicle comprises a differentially-
driven tractor and three off-axle hitched passive trailers
(values of hitching offsets Lhi are adjustable in a range

[−0.008; 0.056] m allowing the vehicle to be reconfigured
to the nS3T, G3T, or S3T kinematics). The tractor is
equipped with a floating-point digital signal processor
(TMS320F28335) and is computationally self-sufficient (all
the control algorithms and a reference signals generator
have been implemented on-board). The last trailer has
been selected as a guiding segment which is localized by
the vision system upon a view of a LED marker mounted
on the trailer top. The angles βi are measured with the
14-bit absolute encoders mounted in the joints. The on-
board motion control system with a cascade-like controller
(presented in Fig. 13) works with a frequency of 100 Hz.
More details on the laboratory set-up can be found in
Micha lek et al. (2015).

5. CASCADE-LIKE CONTROL: THE RESULTS FOR
NON-STANDARD-N-TRAILER KINEMATICS

We are going to illustrate application of the cascade-like
control concept discussed in Section 4 to solve selected
control problems for the N-trailer vehicles. Due to space
limitations, we will limit our considerations only to the
nSNT kinematics with l = j = N .

5.1 Application to the PS/TT/PF control problems

Application of the cascade-like control concept to three
classical control problems (i.e. PS, TT, and PF) can be
illustrated by a unified block scheme in Fig. 14. Spe-
cialization of the control system to a particular control
task comes from a selection of an appropriate outer-loop
control function Φ(·). Since Φ(·) determines desired veloc-
ities uNd for unicycle kinematics, one can find numerous
functions of this type widely proposed in the literature
for various control problems (see, e.g., Kim and Tsiotras
(2002); Morin and Samson (2008a)). To fix our attention,
let us limit further considerations to the VFO (Vector-
Field-Orientation) control function which can be applied

Fig. 13. The RMP robotic vehicle (upper view) available as a
part of the laboratory setup in the Institute of Automation
and Robotics at Poznan University of Technology, and a block
schema of the control system (with an external vision feedback)
implemented on the vehicle’s board
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Fig. 14. Cascade-like control system for nSNT vehicles capable of
solving the PS, TT, and PF control problems

in the outer loop for all three classical tasks in the versions
proposed in Micha lek and Koz lowski (2010) and Micha lek
and Gawron (2018).

In the VFO control approach, one assumes the existence
of the so-called convergence vector field h = [hθ hx hy]⊤ ∈
R

3, which at every point of the configuration space deter-
mines desired direction toward a reference pose. A form of
the first component hθ will be defined in the same man-
ner for all the tasks, whereas the other two components
h̄ = [hx hy]⊤ ∈ R

2 will be defined separately for three
considered control problems. Upon the VFO control design
strategy, the VFO control function can be represented in
the uniform manner as follows

Φ(h) ,

[
hθ

hxcθN + hysθN

]

,

[

ka(θa − θN ) + θ̇a
hxcθN + hysθN

]

, (42)

where ka > 0 is a design parameter,

θa , Atan2c (ζ hy, ζ hx) ∈ R

is an auxiliary orientation variable, and ζ ∈ {−1,+1} is
a bi-valued decision factor determined separately for all
three control tasks. Specialized VFO control functions are
determined by specialized forms of vector fields h̄, that is,
ΦPS , Φ(hPS), ΦTT , Φ(hTT), and ΦPF , Φ(hPF) with

h̄PS(ēN ) , kpēN − ζη ‖ ēN‖ [cθNr sθNr]
⊤
, (43)

h̄TT(ēN , t) , kpēN + [ẋNr ẏNr]
⊤
, (44)

h̄PF(xN , yN ) , kpF (xN , yN )ϑ + vrRϑ, (45)

where

ēN ,

[
xNr − xN

yNr − yN

]

is a positional error, kp > 0 and η ∈ (0, kp) are the design
parameters, vr > 0 is an absolute value of the reference
velocity vNr = ζvr, ϑ = −∇F/ ‖∇F‖ is a negative
gradient versor of function F , while R =

[
0 1
−1 0

]
is a fixed

rotation matrix. The resultant cascade-like control law for
the nSNT kinematics takes now the form

u0d ,

N∏

i=1

J−1
i (βi)Φ(h), h ∈ {hPS,hTT,hPF}, (46)

where selection of the argument h depends on the partic-
ular control task under consideration.

Solution to the PS problem (stated in Definition 3) with
control law (46) and the VFO control function ΦPS =
Φ(hPS) has been proposed in Micha lek (2012a). The exem-
plary experimental results in backward docking obtained
with the nS3T vehicle are provided in Fig. 15. One can
observe non-oscillatory and fairly natural motion of a ve-
hicle despite the fact that no motion planning between the
initial and final configuration was done in this case. This is
a result of the VFO control function properties (with the
so-called directing effect) which smoothly (non-oscillatory)
guides the last trailer to a reference pose. The non-folding

motion of a vehicle chain is guaranteed here for the positive
hitching offsets present in a vehicle; for the negative offsets,
similar control performance shall be expected in forward
docking maneuvers, see Micha lek (2012a). The latter work
shows also that the PS control problem can be solved for
the nSNT kinematics with the VFO controller only with
the practical convergence, that is for δ > 0, although a
value of vicinity δ can be made arbitrarily small.

Solution to the TT control task (see Definition 4) with
control law (46) and the VFO control function ΦTT =
Φ(hTT) has been proposed in Micha lek (2017), were suf-
ficient conditions for asymptotic tracking were provided.
Exemplary experimental results of backward tracking the
eight-shaped (Lissajous curve) reference trajectory with
the nS3T vehicle are presented in Fig. 16. A very difficult
initial condition has been intentionally imposed on the
vehicle in order to reveal control system ability to perform
agile maneuvering in the closed-loop system during a tran-
sient stage. It is worth stressing that computation of the
reference joint angles was not needed in this case, since
the angles βr(t) are not used in the cascade-like control
system. This fact substantially simplifies application of
the control law in practice. The non-folding motion of a
vehicle chain is obtained, again, for the positive hitching
offsets present in a vehicle; for the negative offsets, similar

Fig. 15. A sequence of upper-camera views of experimental docking
maneuvers obtained with the RMP laboratory vehicle (a refer-
ence pose has been denoted by the green dock, a detected pose
of the last trailer has been denoted by the purple mark)
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Fig. 16. A sequence of upper-camera views of experimental tracking the eight-shaped reference trajectory (highlighted in green) with the
RMP laboratory vehicle (a detected pose of the last trailer has been denoted by the purple mark); a trajectory drawn by the last trailer
has been denoted in grey

control performance shall be expected in forward tracking
maneuvers, see Micha lek (2017).

Solution to the PF control problem (formulated by Def-
inition 5) for the nSNT kinematics, with sufficient con-
ditions for asymptotic stability of point epf = 0 in the
closed-loop system, has been studied in Micha lek (2014b).
The results provided there illustrate control quality with
an alternative outer-loop control function Φ(·) proposed
by Morro et al. (2011). Figure 17 presents (for the first
time) selected experimental results obtained with the VFO
control function ΦPF = Φ(hPF) determined by the vector
field (45). We concern the case of backward following an
elliptical reference path (represented by the zero-level set

f(xNr, yNr) , (x2
Nr/a

2)+(y2Nr/b
2)−1 = 0) with an initial

vehicle configuration located relatively far from the refer-
ence path. Similarly to the TT problem, no computation
of the reference joint angles βr was needed in application
of the cascade-like control system. Again, the non-folding
motion of a vehicle chain is ensured for the positive hitch-
ing offsets, while for the negative offsets similar control
performance shall be expected in forward maneuvers, see
Micha lek (2014b) for a formal justification.

5.2 Application to the APF control problem

In order to take into consideration the whole articulated
vehicle in the task of averaged path-following, one needs
to define a guiding point for the vehicle by combining
information about all its segments in some sense. Following
the concept proposed in Micha lek (2015) for the forward
motion conditions, let us introduce the so-called virtual
guidance point (VGP) q̄ ∈ R

3, being a weighted combina-
tion of poses of all the vehicle segments, that is,

q̄ =
[
θ̄r x̄r ȳr

]⊤
, w0q0 + . . . + wNqN ,

Fig. 17. A sequence of two selected upper-camera views illustrating
experimental following of an elliptical reference path (the green
line) with the RMP laboratory vehicle (the grey line denotes
the path drawn by a last trailer of the vehicle)

where the weights

w = [w0 w1 . . . wN ]⊤ ∈ R
N+1
≥0 : w0 + . . .+wN = 1 (47)

are treated as design parameters. Values of the weights
shall be appropriately selected in order to minimize the
off-track of a vehicle (see (31)) with respect to a given
reference path represented by F (x̄r, ȳr) = 0, cf. (30).
Postulating the unicycle-like motion nature of the VGP,
i.e., assuming that ˙̄q = G(θ̄)ū for some virtual input
ū = [ω̄ v̄]⊤ and matrix G resulting from (6), one can easily
derive (see Micha lek (2015)) the desired velocity vector for
the N-trailer in the form

u0d , Γ†(q,w)G(θ̄)ΦAPF, (48)

where the outer-loop function ΦAPF , Φ(hPF(x̄, ȳ)) is
determined by the vector field h̄PF(x̄, ȳ) resulting from
definition (45) and evaluated at a current position of VGP,
whereas Γ† = (Γ⊤Γ)−1Γ⊤ is a left pseudo-inverse of a 3×2
matrix

Γ(q,w) = w0G(θ0) +
N∑

i=1

wiG(θi)
1∏

j=i

Jj(βj).

The resultant control system for the APF problem has
been shown in Fig. 18. One can observe that the APF

Fig. 18. Cascade-like control system for nSNT vehicles capable of
solving the APF control problem in forward motion conditions
(VGP: Virtual Guidance Point)

control problem is treated here in a similar way as the PF
control problem, replacing only a guidance point fixed to
a single segment with the virtual guidance point (VGP)
combining poses of all the vehicle segments. The key
issue is to select/find the weights w which lead to the
minimal (or at least acceptably small) corridor radius ε
introduced in Definition 6. Exemplary simulation results
illustrating effectiveness of the proposed control strategy
for the nS3T kinematics with negative hitching offsets
(Lhi = −0.1 m, i = 1, 2, 3) have been presented in Fig. 19.
The plots compare control performance for two cases: with
w = [1 0 0 0]⊤ and with w = [0.3 0.15 0.55 0.0]⊤, where
the latter weights were found off-line in the steady motion
conditions of a vehicle obtained for a circular reference
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Fig. 19. Exemplary simulation results of the averaged path-
following with nS3T in forward motion conditions along a
sinusoidal path for two different weights vectors (the VGP has
been highlighted by the red mark)

path of curvature κr = 0.67 m−1. The red dashed lines
in Fig. 19 delimit the ±0.25 m-width corridor around the
reference sinusoidal path. One can observe that selection
of weights w∗ allows the controller (48) to keep the paths
drawn by all the vehicle segments within the imposed
corridor (in contrast to the case where the tractor plays
a role of a guidance segment, a shown on the upper plot
in Fig. 19). It is worth stressing that in general the VGP
is not fixed to the vehicle body, but it is floating since its
pose depends on a current vehicle configuration. So far,
the APF problem has been addressed for the N-trailers
only in the case of forward motion conditions.

5.3 Application to the LU control problem

A commonly used practical method to solve this control
problem relies on using the structural asymptotic stability
of the point β = 0 for the N-trailers in forward motion
conditions. By forcing a zero-curvature forward motion to
a tractor, the chain of vehicle segments will asymptotically
(for t → ∞) tend to line all the trailers up with the
tractor unit – we will call this approach the passive LU
control. In this approach, the tractor is a guiding segment.
One can show, see Micha lek (2014a), that a convergence
rate of joint angles in the passive lining-up maneuver
is (locally) inversely proportional to the trailer lengths
and can be estimated upon the approximated dynamics
β̇(t) = Wpβ(t) where eig(Wp) = {−V0/Li, i = 1, . . . , N}
and V0 ∈ (0;∞) is a prescribed longitudinal velocity of
the tractor. Therefore, for a vehicle with long trailers the
effective passive LU maneuver requires excessively long
distance travelled by a tractor segment. An alternative
approach is to apply the control system shown in Fig. 20
which allows lining all the nSNT vehicle segments up in an
active manner – we will call this approach the active LU
control. In this case, the last trailer is a guiding segment
(the role replaced with a tractor), and the LU outer-loop
feedback controller takes the form

Fig. 20. Control system for nSNT vehicles capable of solving the
active LU control problem

ΦLU ,

[
0

Φv

]

, Φv ,

{
−sgn(LhN )VN for ‖β‖ > δ

0 for ‖β‖ ≤ δ
,

where VN ∈ (0;∞) is a prescribed velocity of a maneuver
for the last trailer. Function ΦLU determines a zero-
curvature motion for the last trailer in a backward strategy
if sgn(LhN ) > 0, and in a forward strategy if sgn(LhN ) <
0. If an articulated vehicle is equipped with the sign-
homogeneous hitching (that is, if sgn(LhN ) = sgn(Lhi)
for all i = 1, . . . , N − 1) the LU control law

u0d(β) ,

N∏

i=1

J−1
i (βi)Φ

LU (49)

solves the LU control problem from Definition 7 in the
active manner for the nSNT kinematics in some (small)
vicinity E0 of zero. It has been revealed in Micha lek (2014a)
that a convergence rate of joint angles during the active
lining-up process can be estimated for sufficiently small
joint angles upon the approximated dynamics β̇(t) =
Waβ(t) where eig(Wa) = {−VN/ |Lhi| , i = 1, . . . , N}.
Thus, for the vehicle with (much) shorter absolute hitching
offsets than the trailer lengths (the most practical case)
convergence of joint angles during the active lining-up
maneuver can be (much) faster and more effective relative
to a similar effect in the passive lining-up maneuver. As a
consequence, a resultant distance travelled by the guiding
segment can be (much) shorter in the active lining-up
maneuver when compared with the passive one. Exem-
plary experimental results obtained for the active lining-
up maneuver with the nS3T vehicle with hitching offsets
Lhi = −0.008 m, i = 1, 2, 3, have been presented in Fig. 21.
Since all the hitching offsets are negative in this case,
the lining-up maneuver has been performed in forward
motion conditions. It is worth noting a very short distance
travelled by the last trailer during the maneuver, and (as
a side effect of the lining-up strategy) a preservation of the
orientation angle θN on its initial condition θN (0) during
the whole control process. Additional results obtained also
for the G3T and S3T kinematics can be found in Micha lek
(2014a).

6. COMMENTS AND OPEN PROBLEMS

We have introduced and discussed the modular and scal-
able nonlinear cascade-like control system which allows
solving various motion control problems for the N-trailer
kinematics in a unified way. The cascade-like structure
simplifies a control design process, even for differentially
non-flat nSNT and GNT kinematics, practically reducing
it to the feedback control design for unicycle-like kine-
matics. In this way, one may avoid a difficult problem
of computing the time-varying reference joint angles βr,
which (as it has been shown and discussed above) are
not needed for a practical execution of agile maneuvers
with the N-trailers. Such a simplification must be followed,
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Fig. 21. A sequence of upper-camera views of the experimental active lining-up maneuver obtained with the RMP laboratory vehicle (a
detected pose of the last trailer has been denoted by the purple mark)

however, by a guarantee that internal dynamics of joint
angles is naturally stable to avoid the vehicle-folding ef-
fects, not detectable by the outer feedback loop (except the
LU problem, no direct stabilization of joint-angle errors
is applied in the proposed cascade-like control system).
This guarantee imposes some fundamental constraints on
a possible combinations of vehicle motion strategies (for-
ward/backward) and signs of hitching offsets present in a
vehicle chain. As a consequence of these constraints the
PS, TT, and PF control problems are solved mainly for
the backward motion conditions if all the hitching offsets
are positive, or for forward motion strategy if all the
hitching offsets are negative. Control design for the case of
mixed signs of hitching offsets is challenging in general,
especially when asymptotic convergence for the output
error is addressed, see the recent paper by Micha lek and
Pazderski (2018b). Table 1 explains which control prob-
lems have been solved so far with the cascade-like control
approach for particular kinematics of the N-trailers. Some
of the publications include only simulation results, without
providing any rigorous stability analysis for the closed-loop
system (denoted by ’noA’ in Table 1).

There still exist open issues in the area of control design
for the N-trailers; selected problems can be formulated in
a form of questions:

• How to stabilize the non-flat N-trailer kinematics at
an arbitrary configuration qr?

• Is the nSNT/GNT kinematics controllable in singular
configurations?

• How to compute the S-P reference configuration tra-
jectories and paths for the non-flat GNT kinematics?

• Is the SNT kinematics inherently more sensitive to
feedback noises relative to nSNT kinematics?

• How to solve the APF problem for backward motion
conditions?

• How to address control problems for the N-trailers
in the presence of state constraints preserving agile
maneuvering capabilities?

In the case of state-constrained motion tasks formulated
for the N-trailers (taking into account, e.g., obstacles in
the motion environment, mechanical limits in the vehicle
joints, and limited motion curvature of a tractor unit),
it seems that the cascade-like feedback control system
considered in this paper shall be treated only as a part
of a larger motion-algorithmization system. This system
should tightly combine constrained motion planning and
feedback control in a one coherent system in order to
preserve capability of performing agile maneuvers under
difficult practical motion conditions. Probably only in this
way the autonomous N-trailers will have a chance to be
more widely accepted in practical applications.
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limitations in reference-tracking and path-following for nonlinear
systems. Automatica, 44(3), 598–610.

Altafini, C. (2001). Some properties of the general n-trailer. Int. J.
Control, 74(4), 409–424.

Altafini, C. (2002). Following a path of varying curvature as an
output regulation problem. IEEE TAC, 47(9), 1551–1556.

Altafini, C. (2003). Path following with reduced off-tracking for
multibody wheeled vehicles. IEEE TCST, 11(4), 598–605.

Barraquand, J. and Latombe, J.C. (1993). Nonholonomic multibody
mobile robots: controllability and motion planning in the presence
of obstacles. Algorithmica, 10, 121–155.

Bolzern, P., DeSantis, R.M., and Locatelli, A. (2001). An input-
output linearization approach to the control of an n-body articu-
lated vehicle. ASME Journal of DSMC, 123, 309–316.

Brockett, R.W., Millman, R.S., and Sussmann, H.J. (1982). Differ-
ential Geometric Control Theory. Birkhäuser, Boston.
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