
Laboratory of Adaptive Control
Institute of Automation and Robotics

Poznań University of Technology

IAR-PUT
Maciej M. Michałek

E6 Active/Adaptive Disturbance Rejection Control (ADRC)

The exercise is devoted to the control design problem in the ADRC (Active/Adaptive
Disturbance Rejection Control) scheme for the exemplary plant and to verification of the
designed control system in the Matlab-Simulink environment. In the ADRC control scheme,
the adaptation process results from the appropriate on-line update of an additional control
signal which is responsible for compensation of the so-called total disturbance encompassing
all the unknown and uncertain terms of the plant model.

1 Description of the plant

Let us consider the process of rolling motion for the delta-wing aircraft presented in Fig. 1.
Thanks to the differential deflection δa (expressed in [rad]) of ailerons on the left and right

Figure 1: A view of the delta-wing aircraft in the rolling motion with angular velocity β̇ (based
on E. Lavretsky, K. A. Wise: Robust and Adaptive Control with Aerospace Applications, Springer, London, 2013)

sides of the aircraft body, it is possible to change the aircraft roll-angle β expressed in [rad].
One can approximate the roll-angle dynamics by the following nonlinear differential equation

β̈ = θ10β + θ20β̇ + θ60(δa + d) + (θ30 |β|+ θ40 |β̇ |)β̇ + θ50β
3, (1)
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where θ10, θ20, . . . , θ60 are the true parameters of the plant, while the term d represents some
external disturbance which affects the plant through the input channel. From now on, we
assume what follows:

A1. the only measurable signals are the control input u , δa and the plant output, that is,
the roll angle: y , β,

A2. the values of parameters θ10 = −0.018 and θ20 = 0.015 are perfectly known upon the a
priori knowledge,

A3. upon the a priori knowledge it is known that the input gain θ60 ∈ [0.05, 0.80],

A4. values of parameters θ30, θ40, and θ50 are unknown,

A5. the external disturbance d is bounded but it is unmeasurable, unknown, and can be time
varying.

Note that values of control input u = δa must be inherently constrained to a (subset of) range
[−π;π] rad due to physical interpretation of δa.

2 Control performance requirements

We are interested in designing the ADRC control system for the roll-angle dynamics represented
by equation (1) which, under assumptions A1 to A5, guarantees satisfaction of the following
prescribed performance requirements:

R1. signal yr(t) = βr(t) is a bounded time-varying reference trajectory for the aircraft roll
angle such that ẏr(t) and ÿr(t) exist and are bounded,

R2. tracking error e(t) , yr(t) − y(t) converges with no overshoot to an arbitrary small
vicinity of zero, that is |e(t)| ¬ ǫ for t→∞, where ǫ  0 is a sufficiently small constant,

R3. settling time Ts1% of the closed-loop system satisfies Ts1% ≈ α for α > 0 expressed in [s].

3 Control system design

3.1 Step 1: description of the plant model in the extended-state space

The roll-angle dynamics (1) represents a highly uncertain system which can be rewritten as

β̈ = θ10β + θ20β̇ + θ̂6δa + F (β, β̇, δa, d), (2)

where
F (β, β̇, δa, d) = (θ30 |β|+ θ40 |β̇ |)β̇ + θ50β

3 + θ60d+ (θ60 − θ̂6)δa

will be called the total disturbance since it aggregates all the unknown or uncertain terms of the
plant model. In order to design the ADRC control system, we need to write the plant dynamics
(2) in the form of an extended-state space model. Let us introduce the extended state

x =






x1
x2
x3




 ,






β

β̇
F




 (3)

where the third state variable is equal to the total disturbance. The expression extended state
means that the natural state of the second order dynamics (2) is extended by an additional
(artificial) state variable equal to the total disturbance. Justification of this extension will be
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provided in Sections 3.2 and 3.3. Upon equation (2), and taking u , δa (see assumption A1),
one derives the extended-state space model in the following form

ẋ =






0 1 0
θ10 θ20 1
0 0 0






︸ ︷︷ ︸
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︸ ︷︷ ︸

B

u+






0
0
1




 Ḟ (4)

which shall be complemented by the output equation (according to assumption A1)

y =
[

1 0 0
]

︸ ︷︷ ︸

C

x = x1. (5)

3.2 Step 2: design of the controller structure

A nominal controller in the ADRC scheme consists of two loops: the total disturbance compen-
sation loop represented by component ucn, and the outer feedback-feedforward loop represented
by component u∗. The nominal ADRC control signal is defined as follows

un ,
u∗ + ucn

θ̂6
, ucn , −F, (6)

where the term u∗ will be designed in Section 3.4. The general idea characteristic for the control
law (6) relies on a compensation for the unknown term F in dynamics (2), and then on designing
the outer-loop control u∗ for the compensated plant model. A practical efficiency of the ADRC
controller substantially depends on the effectiveness of the total disturbance compensation
process. Since the total disturbance F is unknown and unmeasurable, the nominal control law
(6) cannot be applied in practice. Therefore, one proposes a practical version of ADRC control
law in the form

u ,
u∗ + uc

θ̂6
, uc , −F̂ , (7)

where F̂ is an estimate of the total disturbance. Since F is a third variable of the extended state
(3), it is possible to design a state observer which will allow estimating F and next utilizing it
in the control law (7).

3.3 Step 3: design of the extended-state observer (LESO)

In order to estimate the total disturbance term, one introduces the Linear Extended-State Ob-
server (LESO), which corresponds to the classical Luenberger observer defined for the extended
state (3), that is,

˙̂x = Ax̂+Bu+L(y −Cx̂)

= (A−LC)
︸ ︷︷ ︸

Γ

x̂+Bu+Ly, (8)

where matrices A, B, and C are taken from (4) and (5), respectively, while

L =
[

l1 l2 l3
]⊤

(9)

is the observer gain vector which has to be designed yet. The matrix

Γ = A−LC =






−l1 1 0
θ10 − l2 θ20 1
−l3 0 0




 (10)
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must have all the eigenvalues in the left-half complex plane. Determination of the observer
gains is possible by appropriate locating the eigenvalues of matrix Γ using the design condition

det(λI − Γ) =Wo(λ), Wo(λ) , (λ+ ωo)
3 = λ3 + 3ωoλ

2 + 3ω2oλ+ ω
3
o (11)

where Wo(λ) is the desired polynomial guaranteeing location of a triple real eigenvalue at
λ = −ωo for some prescribed frequency ωo > 0. Since

det(λI − Γ) = λ3 + (l1 − θ20)λ
2 + (l2 − θ10 − l1θ20)λ+ l3, (12)

thus by comparing the corresponding coefficients of Wo(λ) and polynomial (12) one gets the
solution:

l1 = 3ωo + θ20, (13)

l2 = 3ω
2
o + θ10 + l1θ20, (14)

l3 = ω
3
o . (15)

Equation (8) determines LESO for the continuous time domain. To obtain a discrete time
version of LESO, one can discretize equation (8) using, e.g., the Euler-Forward method which
yields

x̂(n) = (I + TaΓ)
︸ ︷︷ ︸

Γa

x̂(n− 1) + TaB
︸ ︷︷ ︸

Ba

u(n− 1) + TaL
︸︷︷︸

La

y(n− 1), (16)

where Ta > 0 is a sampling time used for the estimation process.

3.4 Step 4: design of the outer-loop control component u∗

Since the total disturbance can be on-line estimated by LESO, one may replace F̂ in definition
(7) with the estimate x̂3 provided by a solution of (8) or (16). After substituting (7) into (4)
one gets the dynamics

ẋ2 = θ10x1 + θ20x2 + x3 + θ̂6
u∗ − x̂3

θ̂6
= θ10x1 + θ20x2 + u

∗ + (x3 − x̂3) (17)

Design of the outer-loop control u∗ will be conducted for the case of perfect compensation
(cancellation) of the total disturbance, that is, for x3 − x̂3 ≡ 0. In these ideal conditions holds

ẋ2 = θ10x1 + θ20x2 + u
∗ ⇒ β̈ = θ10β + θ20β̇ + u

∗. (18)

By definition of the tracking error we can write

e = βr − β ⇒ β = βr − e (19)

ė = β̇r − β̇ ⇒ β̇ = β̇r − ė (20)

ë = β̈r − β̈ ⇒ β̈ = β̈r − ë (21)

which allow rewriting the compensated dynamics (18) in the form

β̈r − ë = θ10(βr − e) + θ20(β̇r − ė) + u
∗ (22)

or, after simple reordering the particular terms, as

ë− θ20ė− θ10e = β̈r − θ20β̇r − θ10βr − u
∗. (23)

Let us define the outer-loop control in a way which ensures that the closed-loop error dynamics
is bounded and asymptotically convergent to zero. To this aim, we propose a definition

u∗ , β̈r − θ20β̇r − θ10βr
︸ ︷︷ ︸

feedforward

+ kdė+ kpe
︸ ︷︷ ︸

PD feedback

(24)
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which consists of the feedforward term (depending on the reference signals) and the PD feed-
back term with two controller gains kp, kd > 0 which have to be designed yet. By substituting
the control law (24) into (23) yields the closed-loop error dynamics

ë+ (kd − θ20)ė+ (kp − θ10)e = 0 (25)

which is asymptotically stable if the two coefficients near the terms e and ė are positive. In
order to satisfy the performance requirements R2 and R3, one proposes to select the controller
gains kp and kd according to the following design condition

s2 + (kd − θ20)s+ (kp − θ10) =Wc(s), Wc(s) , (s+ ωc)
2 = s2 + 2ωcs+ ω

2
c (26)

where Wc(s) is the desired polynomial guaranteeing location of a double real pole at s = −ωc
for some prescribed frequency ωc > 0. By comparing the corresponding coefficients of the
polynomials in (26) one gets the synthesis equations

kp = ω
2
c + θ10, (27)

kd = 2ωc + θ20. (28)

Note that frequency ωc should be appropriately related to the frequency ωo used in the LESO
design (see (11)). A general rule is

ωc ≪ ωo (29)

to assure that the convergence of estimation error x̂(t)−x(t) will be substantially faster than
the convergence of tracking error e(t). Additionally, upon requirement R3 one shall select

ωc ≈
2π

α
because Ts1% ≈

2π

ωc
. (30)

Combination of rule (29) and condition (30) gives the proposed synthesis equations

ωc ≈
2π

α
, ωo =

ωc
µ
, 0 < µ≪ 1 (31)

where µ is a sufficiently small scaling factor. Worth to emphasize here that the synthesis
equations (27)-(28) and tuning rules (31) guarantee satisfaction of requirement R3 with no-
overshooting response only in the perfect compensation conditions. Thus, if the compensation
of the total disturbance is not perfect (a practical case), the requirement R3 will be met only
approximately.

Summarizing, the ADRC control law is a combination of definition (7) with (24), and takes
the final form

u =
[

β̈r − θ20β̇r − θ10βr + kd(β̇r − x̂2) + kp(βr − β)− x̂3
]

/θ̂6, (32)

where x̂2 and x̂3 are taken from LESO. The term β̈r − θ20β̇r − θ10βr is responsible for the
feedforward control, the term kd(β̇r − x̂2) + kp(βr − β) is the PD feedback control, while x̂3 is
responsible for a compensation of the total disturbance. According to assumption A1, the D
part of the PD control component has been rewritten by using the estimate x̂2, because signal
β̇ is not measurable and it cannot be used in the controller. Moreover, in practical applications
it is recommended to post-process the control signal (32) with the saturation function

Sat(u, um) , min{|u| , um} · sign(u), (33)

where um > 0 is a prescribed saturation level of the control signal (in the case of system (1),
one shall take um ¬ π). A resultant scheme of the ADRC control system corresponding to the
control law (32) followed by the saturation block is presented in Figure 2.
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Figure 2: Block scheme of the ADRC system for the aero-plant; the blocks and arrows high-
lighted in gray constitute the adaptive loop in the control system while the black ones corre-
spond to the conventional part of the control system (RSG = Reference Signals Generator)

3.1 Reference trajectory tracking in the ADRC system.

• Open the file DeltaWingPlantADRC.mdl which contains the plant described by
dynamics (1) and the reference signal generator (RSG). The RSG block produces
two types of the reference trajectory yr(t) and its time derivatives ẏr(t), ÿr(t):

TYPE 1: yr(t) , Yr sin(ωrt), (34)

TYPE 2: yr(t) , H(s)[Yr(t)rect(ωrt)], (35)

where rect(ωrt) represents a rectangular signal with unit amplitude and frequency
ωr rad/s, H(s) is a prescribed third order linear filter, while Yr(t) is a time-varying
amplitude.

• On the scheme in file DeltaWingPlantADRC.mdl implement the estimator LESO
in the continuous-time-domain form determined by (8), the outer-loop PD+FF
controller (24), and close the loop according to the control law (32) followed by
the saturation block. Select the following parameters: um = π, α = 2.0 s, θ̂6 from
a middle point of the known range [0.05, 0.8], and µ = 0.2.

• Run the ADRC system for the external disturbance d(t) ≡ 0 and the plant initial
conditions β(0) = 0.4 rad, β̇(0) = 0 (to the latter aim, one needs to appropriately
initialize two global variables beta0 and betap0). Analyze the resultant control
quality for both types of a reference trajectory generated by the RSG block – see
(34)-(35) – using the default parameters (read them out from inside of the RSG
blocks).
Important: for the analysis purposes check the time plots of the tracking error
e(t) as well as the control signal u(t), and compare state x(t) with its estimate
x̂(t) computed by LESO; compare the reference signal yr(t) with the plant output
on the same plot; check also behavior of the estimate F̂ (t).
Repeat and analyze simulations for

µ ∈ {0.5; 0.1; 0.03}. (36)

Does the system satisfy performance requirements R2 and R3 in all the cases? How
does the decreasing value of µ influence the control performance and the control
signal? What effects do you expect after adding a stochastic noise to signal y?
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• Compare the control performance of the full ADRC controller with the perfor-
mance obtained when the compensation (adaptation) loop is open (by forcing
x̂3(t) ≡ 0).

• Turn on the external disturbance d(t), which can be selected inside a block of the
plant. Check the control performance of the ADRC system in these conditions.
Repeat the simulations for µ taken from the set determined by (36). Compare the
control performance when the compensation (adaptation) loop is open.

• Replace the continuous-time LESO with its discrete-time counterpart represented
by (16). Check the influence of the sampling time Ta used for computations of the
discrete-time LESO on the overall tracking performance for the following set of
sampling time values:

Ta ∈ {0.04; 0.03; 0.01} s. (37)

Note: the above simulations conduct using µ = 0.1.

�


